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Figure 1: Overview of VATUN. (A) Data embedding view displays the t-SNE results of the dataset and allows the users to directly access
their interesting instance(s). A selected image from this view is shown in the testing view. (B) Testing view reveals the prediction of the trained
model by getting different image conditions from the users and highlights evidential parts of the model via Grad-CAM. If the user changes
the hue and rotation of the selected image, the predicted class changes from ‘Bird’ to ‘Frog’ and the Grad-CAM shows the model fails to
capture the body of the bird. (C) Network view shows the network using unit visualization and presents relevant neural patterns based on
either an selected image(s) in (B) or filter(s) in (C). (C-1) Neural pattern reveals that the model learned pattern 13 as a feature of ‘Sky’ or
blue background. (C-2) Pie graph allows users to know that this feature is shared with three classes, especially for the ‘Airplane’ and ‘Bird’
ones. (D) Simulation view shows how sensitive the model is under different conditions (e.g., rotation, noise, etc.) overall classes.

Abstract
Convolutional neural networks (CNNs) are popularly used in a wide range of applications, such as computer vision, natural
language processing, and human-computer interaction. However, testing and understanding a trained model is difficult and very
time-consuming. This is because their inner mechanisms are often considered as a ‘black-box’ due to difficulty in understanding
the causal relationships between processes and results. To help the testing and understanding of such models, we present a
user-interactive visual analytics system, VATUN, to analyze a CNN-based image classification model. Users can accomplish
the following four tasks in our integrated system: (1) detect data instances in which the model confuses classification, (2)
compare outcomes of the model by manipulating the conditions of the image, (3) understand reasons for the prediction of the
model by highlighting highly influential parts from the image, and (4) analyze the overall what-if scenarios when augmenting
the instances for each class. Moreover, by combining multiple techniques, our system lets users analyze behavior of the model
from various perspectives. We conduct a user study of an image classification scenario with three domain experts. Our study
will contribute to reducing the time cost for testing and understanding the CNN-based models in several industrial areas.

CCS Concepts
• Human-centered computing → Visualization toolkits;
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1. Introduction

Recent advances in deep learning techniques have accomplished
major breakthroughs in various machine learning and artificial
intelligence tasks, including computer vision [KSH12], speech
recognition [HDY∗12], and natural language processing [BCB15,
CW08]. As a result, deep neural networks (DNNs) are widely used
in various industries, such as automobile and healthcare systems.
Inter alia, convolutional neural networks (CNNs) are utilized in a
variety of tasks, ranging from handwritten digit recognition to self-
driving cars and automated diagnostic systems. As CNNs become
critical to our daily lives, the trained model should show consis-
tent performances in diverse circumstances and reveal its reasoning
process. For this, machine learning engineers experiment with the
model and check whether the model is consistent and explainable.
However, as the architecture of the model is complex and the test
dataset is limited, understanding and testing the model becomes
more and more challenging.

To alleviate engineers’ efforts in the testing and understanding
of such CNN-based models and the limited test data, we present
VATUN, a visual analytic for testing and understanding convolu-
tional neural networks. Following user-centered design practice,
we interviewed machine learning researchers working in indus-
tries about their experiences of testing the model for deployment.
Then, we built a system reflecting the feedback they provided.
VATUN consists of four main visual components: (1) a data em-
bedding view that emphasizes the ambiguous data instances which
the model has wrongly classified (Fig. 1 (A)), (2) a testing view that
provides user-driven what-if exploration (Fig. 1 (B)), (3) a network
view that visualizes the semantic features learned by the model and
helps to understand the decision-making processes of the model
(Fig. 1 (C)), and (4) a simulation view that summarizes the what-if
scenarios of how the prediction scores for each class change with
the image augmentation scenarios (Fig. 1 (D)). To supplement the
limits of every single view, the components should be intercon-
nected with each other. If a user explores an image and fails to
find the reason for its misclassification, she or he can verify the
rationale by utilizing neural patterns in the network view. Hence,
VATUN, which integrates multi-aspect analyses to test and under-
stand the model, helps users to investigate the model systematically
on the levels of both data instances and model architecture.

2. Related Work

To design a visual analytic tool for testing and understanding CNN-
based deep neural network models, we studied a wide range of
research based on two perspectives: understanding CNN mod-
els and testing DNN models. Since the network includes a non-
linear structure and becomes more complex than before, under-
standing DNNs requires significant efforts by engineers. To alle-
viate the labor, an instance-based approach visualizes the CNNs
via the data instances, showing how the data instance activates the
model and explaining the model via the data instances [SGPR18,
RFFT16,PHG∗18,SGB∗19,LSC∗18,MCZ∗17,SSC∗16,KCK∗19,
PNJ∗19,YLL∗20,CBN∗20]. In another direction, a network-based
approach [LSL∗17, WSW∗18, LLS∗18] visualizes the overall net-
work as a graph structure and aggregates the internal values in the
nodes and edges of the model.

Regarding the aspects of evaluating machine learning sys-
tems, suboptimal behaviors against adversarial data are ascribed
to the fact that the model is overfitting, underfitting, or biased to-
ward training data [ZBH∗17]. Numerous studies attempt to tackle
the issue by designing a system to test augmented images with
such changes as brightness, occlusion, and rotation [PCYJ17,
TPJR18]. Also, to alleviate the bias problem, a number of tools
and studies have been developed, including API [Ban18], inter-
face [YSA∗18], What-if tool [Goo18], AI Fairness 360 [IBM18],
and FairVis [CEH∗19], to aid a fair machine learning decision.

However, most of the previous studies are focused on single as-
pects such as testing or understanding the model. Therefore, our
system considers how to collaborate both approaches of testing and
understanding the CNNs in a single system.

3. Design Requirements

For more than 12 months, we had regular monthly meetings with
two machine learning researchers who have worked in computer vi-
sion applications in relevant industries. Based on these interviews,
we designed our system and recieved iterative feedback on it. The
goal of this study is to create a coordinated view for testing and
understanding convolutional network models.

Requirement R1. Test the model via directly handling image
instances. It is time-consuming to create or collect the test dataset
that the users want to investigate. To alleviate the limitations of the
test dataset, our system needs to allow the users to manipulate the
image(s) and follow the what-if scenario [SGB∗19].

Requirement R2. Visualize evidential parts of image(s). For
users to understand the decision process of the model easily, our
system should show the parts of the given image that the model
concentrates on for classifications.

Requirement R3. Visualize logical process of model. For users
to inspect the prediction of the model, our system should disclose
the reasoning process by revealing the features the model learned.

Requirement R4. Validate model bias based on multi-aspect ap-
proaches. As new information is more difficult to figure out in sep-
arate views than when it is combined into a single view, our system
aims to integrate all validations steps and make them sync.

4. Design of VATUN

VATUN is a visualization system that allows users to test a CNN-
based model easily. VATUN consists of four views: data embedding
view, testing view, network view, and simulation view.

4.1. Data Embedding View

In this view, the users can directly access a ambiguously classi-
fied image(s) and click the instance(s) to investigate in the testing
view (Fig. 1 (B)) and network view (Fig. 1 (C)) (R4). Considering
the exploration approach [RFFT16], we aim to help users not only
identify the ambiguous data instance(s) directly but also understand
how the model learned the relationship between the images. There-
fore, the scatterplot presents a dimension-reduced projection of hid-
den representations in the CNNs just before the last layer. When the
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Figure 2: Testing corner-case data. The explanation view shows
that the head part of a dog image is important to classify this image.
Concealing the head part leads to inaccurate prediction, ‘Bird.’

Figure 3: Comparison of data instances with and without neural
pattern recommendation. (a) depicts one-filter strategy, showing
the most highly activated images when the users click a filter. (b),
(c), and (d) are extracted by our neural pattern recommendation.

“confidence score” button is clicked on, the dots shows the softmax
probability for the predicted class pc as our confidence score. This
confidence score helps users identify ambiguous instances (R1).

4.2. Testing View

To evaluate the model qualitatively, we provide two testing tools
and an understanding tool as follows (R1, R2). The image can be
taken from the embedding view (R4).

Data augmentation by changing image conditions (R1). Users
can select a data instance from the embedding view or upload a
test image, as shown in Fig. 1 (B), and apply image augmentations
on the selected image. The image can be transformed by adjust-
ing the hue, brightness, rotation, vertical flipping, horizontal flip-
ping, blurring, and removing a part of an image’s region. After
the augmentation, the user can see how the model alters its pre-
diction score for the augmented image. Furthermore, our system
provides an adversarial attack based on a fast gradient sign method
(FGSM) [GSS15].

Statistical result on instance level (R1). It is hard to collect and
test all possible cases of image transformation. Therefore, the aug-
mented result charts automatically summarize how the prediction
changes according changes in the image, such as blurring, bright-
ness, hue, or rotation, or an adversarial attack. Based on the simu-
lation result chart, as shown in Fig. 1 (B), the users can verify that
the trained model is vulnerable to rotation but robust to FGSM.

Visually explain the images via Grad-CAM (R2). We use a ma-
chine learning technique called Grad-CAM [SDV∗16] to provide
a visual explanation of how the model classifies the given im-
ages. Users can change the conditions of the image and compare
the model explanations for the original image and the augmented
one via Grad-CAM, where these two steps can be done interac-
tively, which is similar to the what-if scenario [Goo18]. As shown

(a) (b)

Figure 4: Robustness to rotation. In both (a) and (b), the graph
on the left are rotation augmentation graph, where the x-axis is
range of rotation and the y-axis is confidence score. The images on
the right are from train dataset. ‘Airplane’ class (a) is robust to
rotations, while ‘Horse’ (b) is not.

in Fig. 2, users can define the conditions of Grad-CAM: an input
image, a layer of the model followed by the “Conv Layer” caption,
and a class followed by the “Label” caption.

4.3. Network View with Neural Pattern Recommendation

Based on the network view, users can test which nodes are acti-
vated and understand the decision-making process of the model by
crossing the multiple views (R3). The users can select the input
data instance in either the embedding or the testing view (R4).

Network visualization. We visualize all 4,224 filters in the 13 con-
volution layers in the CNN model by unit visualization [PKE17].
Each dot in the unit visualization represents filters, and its color
shows the layer number where the filter belongs to.

Neural pattern recommendation. Extracting features from one
filter is a general method, however, it results in inconsistent fea-
tures that are hard to understand (Fig. 3 (a)). Therefore, our system
extracts the features via the sequences of activated nodes across the
layers of the model (Fig. 3 (b), (c), (d)). Before the user interaction,
our system collects neural patterns in two steps. First, for each im-
age input, we extract indices of the node or filter that has the highest
activation score at each convolutional or fully connected layer and
we make a sequence of those node indices for each image. Second,
we collect sub-sequences that frequently appear in the set of se-
quences. If a sub-sequence appears in more than four sequences of
images, the sub-sequence and corresponding images are defined as
a neural pattern.

After computing the neural patterns for every dataset, our system
recommends the neural patterns that include the images or filters,
which the user selected on another view, as shown in Fig. 1 (C). The
neural pattern is a group of image instances that share the consis-
tent patterns between multiple filters, so this view allows the users
to understand the reasoning process of the model. In addition, as
shown in Fig. 1 (C-2), we summarize the class information of each
neural pattern as a pie graph. The pie graph helps users recognize
whether the pattern is unique or general across the classes.

4.4. Simulation View

The simulation view (Fig. 1 (D)) shows statistically summarized
graphs at the class level, where the lines represent the changes of
the models’ prediction score along with the augmentation degree
(R1). The x-axis of the chart is the magnitude of the image aug-
mentation, the y-axis is the average softmax probability of each
class, and all statistics are pre-computed. Based on the simulation
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Figure 5: Example of the complementary relationship between the
testing view and the network view. Grad-CAM in testing view does
not clearly explain the misclassification. However, the neural pat-
tern recommendation explains that the model is biased to the back-
ground of grass or earth for the ‘Deer’ class.

charts, the users can understand where the model is robust or weak.
For instance, as shown in Fig. 4, the ‘Airplane’ class includes im-
ages with a diverse set of rotations. This allows the ‘Airplane’ class
to maintain the first rank in all augmentation degrees of rotation.

5. Usage Scenarios

Our usage scenario demonstrates how VATUN can be useful in
helping users evaluate CNN-based models. We invited three do-
main experts, where E1 and E2 are software engineers working at
the software (model) testing team at a major company and E3 is a
deep learning researcher working on video data with CNNs. First,
we introduced the tool for 25 minutes and gave them 10 minutes to
become familiar with the model and the system. For the next hour,
participants freely used the system to explore the pre-trained model
and to assess various cases by testing and understanding the model.

For our usage scenarios, we use the VGG-16 network [HZRS16,
HLMW17], which is one of the most widely used CNNs. The
VGG-16 model contains 13 convolutional layers. To validate our
system, we utilize the CIFAR-10 dataset [KH09], a widely used
image classification benchmark. With the CIFAR-10 dataset, the
test accuracy of VGG-16 is 94.1%.

5.1. Model Testing

Find model bias via multiple views (R4). E1 noticed that an im-
age in Fig. 5 was wrongly classified as ‘Deer’ instead of the true
value of ‘Cat,’ and the image dot is located near the center of the
‘Deer’ class in the data embedding view. “In the testing view, I
could not understand why the model classified the cat image into
the deer class, but I guess it was due to the grass. So I move up to
the network and neural pattern view. Via the neural pattern, I could
finally understand the misclassification and verify that my hypothe-
sis was correct.” Interestingly, we found that the neural patterns for
the images classified in the ‘Deer’ class have many features related
to the grass and the earth.

Figure 6: Neural patterns from selected image. Rights are neural
patterns corresponding to the selected image on the left. These pat-
terns mainly reveals ‘Grass’ and ‘Horse’ for each image group.

Evaluate robustness of the model via testing view (R1, R2).
Overall, experts were interested in the cases of failure in the classi-
fication task and concentrated on spots where clusters of the same
classes overlapped. E3 found an image with the true label ‘Ship,’
but the model misclassified it as ‘Airplane.’ “From Grad-CAM in
the testing view, I was able to see that the ‘Sea’ and ‘Sky’ part of
each image contributed to classifying the images as ‘Ship’ and ‘Air-
plane.’ I speculated that when an airplane is with a sea background,
the model misinterprets the airplane as a ship.” Also, E3 adjusted
the brightness of the image and found an image that was correctly
classified in the ‘Dog’ class. E3 said, “The trained model would be
reliable if the model properly classified such augmented images.”

Neural patterns of selected data instances (R3). Most of the ex-
perts tried to analyze the features of the filters, which are heavily
influenced the prediction. The experts clicked an image instance
and explored the neural patterns corresponding to the selection. In
images in Fig. 6, they found that the model captures the two fea-
tures of the grass and horse’s head. Prevalent features were in low-
level layers, which diverse classes share, e.g., grass with car or dog.
Besides, in high-level layers, the patterns become highly related to
the class of the image, e.g., horse head. E2 said, “Owing to the neu-
ral pattern recommendation, we can explore features significant for
classification and understand the characteristics of filters in CNNs.”

6. Conclusion

In this paper, we propose VATUN, a novel visual analytic for test-
ing and understanding convolutional neural networks by integrat-
ing visual components from data instances to network approaches.
As our system has not been deployed with the empirical dataset,
we plan to expand our model with diverse datasets, such as op-
tical character recognition (OCR) and medical images. Especially
in safety-critical domains, the evaluation process is significant and
requires tremendous time due to the severity of the consequences.
We anticipate that VATUN will alleviate the time problem and al-
low machine learning engineers and non-experts to easily diagnose
biases and develop a robust model in the industry.
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