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DPVis: Visual Analytics with Hidden Markov
Models for Disease Progression Pathways

Bum Chul Kwon, Vibha Anand, Kristen A. Severson, Soumya Ghosh,
Zhaonan Sun, Brigitte I. Frohnert, Markus Lundgren, and Kenney Ng

Abstract—Clinical researchers use disease progression models to understand patient status and characterize progression patterns from
longitudinal health records. One approach for disease progression modeling is to describe patient status using a small number of states
that represent distinctive distributions over a set of observed measures. Hidden Markov models (HMMs) and its variants are a class of
models that both discover these states and make inferences of health states for patients. Despite the advantages of using the algorithms
for discovering interesting patterns, it still remains challenging for medical experts to interpret model outputs, understand complex
modeling parameters, and clinically make sense of the patterns. To tackle these problems, we conducted a design study with clinical
scientists, statisticians, and visualization experts, with the goal to investigate disease progression pathways of chronic diseases, namely
type 1 diabetes (T1D), Huntington’s disease, Parkinson’s disease, and chronic obstructive pulmonary disease (COPD). As a result, we
introduce DPVis which seamlessly integrates model parameters and outcomes of HMMs into interpretable and interactive visualizations.
In this study, we demonstrate that DPVis is successful in evaluating disease progression models, visually summarizing disease states,
interactively exploring disease progression patterns, and building, analyzing, and comparing clinically relevant patient subgroups.

Index Terms—Disease Progression, Hidden Markov Model, State Space Model, Diabetes, Huntington’s, Parkinson’s, Interpretability

1 INTRODUCTION

LINICAL researchers want to understand the progression of
diseases. Improved understanding of disease progression can
enable a variety of clinical tasks, including patient management,
cohort selection, and drug discovery. To achieve this goal, clinical
researchers often employ quantitative models, termed ‘disease
progression models’ (DPMs), to characterize the course of disease
progression from patients’ data contained in longitudinal health
records. Using the model, researchers aim to gain insights about
how characteristics of patients interact with the evolution of disease.
This knowledge can ultimately lead to early detection of diseases
and precision care for each patient at appropriate points in time.
However, understanding disease progression trajectories is a
non-trivial task. First, modeling progression of diseases is chal-
lenging because it is often manifested by multiple symptoms over
time, which makes it difficult to summarize progression patterns.
Second, clinical studies usually observe the symptoms of multiple
subjects over discrete, irregular time points, which make modeling
the patterns even more difficult. Third, clinical researchers not only
want to summarize disease progression patterns of subjects, but
also analyze the relationship between their trajectories and health
outcomes. Likewise, understanding disease progression patterns
involve modeling the distinct state transitions from complex,
longitudinal patient records and analyzing the association between
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learned transition patterns and various measures (e.g., genetic
profiles) in order to derive clinically meaningful insights.

Research on type 1 diabetes is an illustrative example for
the importance of DPMs. In the current understanding, type 1
diabetes development can be divided into three stages: i) Stage-
1: normal blood sugar; ii) Stage-2: abnormal blood sugar; iii)
Stage-3: clinical diagnosis of type 1 diabetes [28]. However, the
three stages assume two or more autoantibodies, and it is not
yet established how individuals progress from no autoantibodies
to multiple autoantibodies. There may be differences in the
progression speed between pre-diabetic individuals depending on
the combinations of autoantibodies that they possess at different
time points. Furthermore, some individuals with different genetic
predispositions may follow different trajectories of the evolution of
autoantibodies. To gain more insights, researchers want to discover
transition patterns between high-level ‘states’ that are manifested
by onsets of autoantibodies, to explore subjects’ transition patterns
between the states, and find association between various genetic
variables and trajectories.

In this study, we conducted a design study with clinical
researchers so that we build a tool that helps them to visually
explore disease progression patterns. Throughout the design study,
we derived our users’ task hierarchy and explored design space
to support the tasks using interactive visualization techniques. We
chose Hidden Markov Models (HMMs), over other candidates
because they can infer discrete latent states and transitions between
the inferred states from time-varying multivariate data. In particular,
they adequately handle longitudinal medical data from clinical
studies, which are often incomplete, missing, and measured at
irregular time points. In essence, a trained HMM infers a state
(output) per patient visit based on a set of observed measures
(input) at the visit. For example, T1D researchers can train a HMM
with three autoantibodies variables (input) and use the trained
model to infer states (output) of patients’ records over time. If they



choose a model with K states, then each visit will be assigned to
one of K states. The number of states is a hyperparameter, which
is typically chosen based on cross validation or prior knowledge.
Typically the number of visits is far larger than the number of
states thus causing multiple visits to be assigned to the same state.
The characteristics of the state — a statistical summary of all
visits assigned to the state, is learned automatically from the data.
Using the states inferred (labeled) by the HMM, researchers can
understand the evolution of autoantibodies of multiple patients by
inspecting which states subjects tend to go through at different ages
and which state transitions occur more frequently. As a result of our
design study, we developed a visual analytics system called DPVis
that incorporates HMMs with interactive visualizations. Our case
study demonstrates the usefulness of DPVis for disease progression
analysis. The main contributions of the paper are summarized as
following:

1) We developed DPVis that incorporates HMMs with interactive
visualizations for exploring disease progression patterns from
longitudinal health records.

2) Our design study examines tasks of clinical researchers who
aim to understand disease progression stages and provides
various ways to visualize the statistical outcomes of HMMs
for supporting these tasks.

3) We report a usage scenario and users’ experiences that
demonstrates the usefulness of DPVis for domain experts to
interpret HMMs in a transparent manner, to detect interesting
disease progression patterns, and to derive clinical insights.

2 RELATED WORK

In this section, we review disease progression studies in the field of
medicine, modeling techniques in statistics and machine learning,
and visual analytic approaches in the visualization domain.

2.1

Well-designed longitudinal studies play an important role in clinical
research because they provide rich information for tracking the
progression of disease by collecting repeated measures from
individuals of a target cohort over a long period of time. Such
studies are designed and conducted with many present and future
goals, such as understanding the etiology or pathogenesis of a
disease. One of the most well-known longitudinal studies is the
Framingham Heart Study, which has brought great insights into
heart disease (e.g., [27], [38]). In particular, many studies call for
research into applying suitable statistical modeling techniques
that can explain the mechanism of disease progressions. For
example, the Parkinson Progression Marker Initiative (PPMI) [45]
is an international observational multi-center study of Parkinson’s
Disease. PPMI established protocols that were adopted at 21
clinical sites to provide a platform for researchers to gain common
access to the data, which includes clinical, socio-demographic,
and imaging variables as well as bio-specimens. In case of T1D,
researchers seek to understand the diverse pathways from a healthy
state to the onset of disease for both individual patients and the
overall population [78]. The Type 1 Data Intelligence (T1DI) study
group was established to accelerate disease progression research
by combining decades of data from birth cohort studies conducted
at various institutions around the world: 1) Diabetes Autoimmunity
Study in the Young (DAISY) [59]; 2) Diabetes Prediction in Skéne
(DiPiS) [29]; 3) Diabetes Prediction and Prevention (DIPP) [50];
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and 4) Diabetes Evaluation in Washington State (DEW-IT) [73]. We
conducted a design study with clinical researchers and statisticians
who have been involved in the research groups above.

2.2 Disease Progression Modeling

Disease Progression Models (DPM) [48] include a broad class
of models that quantitatively predict disease status over time.
DPM can be categorized by algorithm into systems biology,
data-driven, and semi-mechanistic models [11]. There are many
different approaches to model disease progression, including
path models [69], tree based models [12], hierarchical latent
variable models [61], Gaussian process models [43], and Bayesian
networks [5]. In this study, we have chosen to focus on Hidden
Markov Models (HMMs), a class of probabilistic generative models
commonly used to model data with longitudinal dependencies. In an
HMM, the target disease is represented by a fixed number of typical
disease states, its progression is characterized by a Markov process,
and the observed measures are the manifestations of the underlying
disease states. By characterizing the progression of disease as
a series of transitions between typical disease states, HMMs
provide an inherently interpretable summary of the progression.
Moreover, HMMs exhibit several desirable properties that make
them well suited for disease progression modeling. First, they are
probabilistic in nature and are able to represent uncertainties in
clinical data organically. Second, they are able to handle missing
data, a common issue in observational studies. Third, users can
apply their domain knowledge into modeling disease progression
dynamics by setting various constraints. For instance, users can
prohibit a model from stepping backward in diseased states when
they investigate chronic diseases, where the damage caused by
the disease is irreversible and affected areas gradually lose their
functions, and backward-enabled progression, where patients can
recover from the diseases. Fourth, HMMs are unsupervised models
that do not require a particular outcome task. Fifth, they provide
interpretability by a small number of ‘states’ that are associated
with multiple observed variables. Examples of variants of HMMs
applied to disease progression include [23], [39], [66], [67], [72].
HMMs are described further in Section 3.3. Despite the advantages,
it still remains challenging for clinical scientists to use the HMM-
based models for exploring disease progression patterns without
visual aids. To use the disease progression model, experts need
(1) to understand the output probabilities of diverse features for
individual states, (ii) to investigate differences in state transition
patterns between patients, and (iii) to associate such patterns with
patient outcome variables (e.g., onset, death, discharge).

2.3 Visualizations for Sequential Event Analysis and
Disease Progression Analysis

In this section, we review previous studies that show inspiring
examples to tackle our problem. Prior studies have investigated
various visualization methods to represent temporal event se-
quences. Shneiderman and Plaisant [63] summarize the challenges
of analyzing temporal sequence data. Several techniques were
proposed to integrate sequence mining algorithms for visualiz-
ing the summary of event sequences, including LifeLines [55],
LifeLines2 [71], EventFlow [47], and LifeFlow [75], which allow
users to visually align and explore various patterns of multiple
event sequences. Frequence [53], Care Pathway Explorer [54], and
Peekquence [36] visualize frequent event sequences mined from the
SPAM algorithm [3]. Outflow [74] and Sequence Synopsis [9] allow



users to interactively explore multiple pathways in event sequences.
These techniques allow users to steer the algorithm with interaction
so that they can find meaningful summaries of event sequences.
However, these studies often deal with pre-defined event types
that are often independent of feature values associated with each
event, which is different from statistically learned states that are
associated with various features in HMMs. Thus, the visualization
approaches for pre-defined event types fall short in revealing the
relationship between the HMM states and the associated variables.

Other techniques integrate automated results with user-defined
queries or criteria. TimeStitch [56], Choronodes [57], and Co-
quito [31] extract frequent mining patterns using algorithms like
PrefixSpan [52], and then visualizes the sequences so that users
can interactively provide relevant feedback to refine the search.
Eventpad [7] and (s|qu)eries [76] allow users to build search
queries using the progressive visual analytics (PVA) paradigm [65];
the idea was further extended and implemented as the PPMT
tool [58]. EventThread [22] visualizes clusters of event sequences
using tensor analysis. Liu et al. [41], MAQUI [37], Cadence [19],
and VASABI [51] allow users to recursively explore hierarchical
patterns in event sequences. ET? [21], StageMap [8], and Mathisen
and Grnbk [46] introduce a composite event sequence to aggregate
patterns. CoreFlow [40] and Guo et al. [20] visualize branching
alternative paths with uncertainties. IDMVis [77] allows users to
fold and align records to derive event sequence patterns. Though
query-based techniques are useful and inspiring, it requires more
sophisticated operations to build queries based on various charac-
teristics of HMMs, such as posterior distributions (uncertainties)
over observed variables and time ranges of event occurrences.

Previous studies also investigate visual analytic methods to
explore and discover patterns from longitudinal data in clinical
studies and electronic medical records. DecisionFlow [18] allows
users to explore multidimensional event sequences using multiple,
coordinated visual analytics systems. Researchers also investigate
methods to analyze heterogeneous cohorts using interactive visu-
alizations [1], [30]. PhenoBlocks [16], PhenoStacks [15], and
PhenoLines [17] allow users to explore and compare cohorts
based on various measures. RetainVis, together with RetainEX,
allows users to understand how individual visits and categorical
variables contribute to making diagnostic risk predictions [32].
Clustervision [33] help users to find informative cohorts of patients
based on their common diseases, treatments, diagnostic measures,
and comorbidities. Bernard et al. developed and evaluated static
dashboard network that can help users to observe longitudinal
changes of multiple patients [6]. Other studies help users make
sense of time-series health data, such as Stroscope [10], TimeS-
pan [42], Marai et al. [44], and RegressionExplorer [13]. Previous
studies show inspiring examples to coordinate multiple views
for event sequence visualization. DPVis needs to tailor these
approaches for showing the similarities and differences in state
transition patterns between a variety of different subgroups of
patients that can be defined from each view.

Though the previous approaches provide inspiring techniques,
there is no unified approach that integrates state-space models
such as HMMs for exploring disease progression patterns from
longitudinal observational data. Our literature review shows that
we need to adapt the approaches for our data, model, and tasks.
The following section describes the adaptation process and result.

3 DESIGN STuDY METHOD

This section describes our design study by introducing characteris-
tics of domain experts, data, HMMs, and tasks and requirements
that experts intend to achieve through visualizations.

3.1 Target Users: Clinical Researchers

We joined a collaborative project established in 2017 by JDRF
and their academic partners for computational modeling of T1D:
the TIDI (Type 1 Data Intelligence) study group [26]. Other
research groups with progression modeling studies for Parkinson’s
and Huntington’s disease were invited to collaborate and provide
feedback. Our primary target users are clinical researchers, whose
goal is to investigate disease progression patterns in observational
data collected from clinical studies.

3.2 Domain Goals and Tasks

In the T1DI study group, we organized more than ten conference
calls and four workshops between October, 2018 and October, 2019
to discuss disease progression trajectories of type 1 diabetes. The
participants were clinical researchers who conduct and investigate
observational studies on children with type 1 diabetes. In the
meetings, we focused on identifying clinically meaningful research
questions and hypotheses domain experts would like to ask
on the observational data through iterative discussion. Authors,
as participants of the meetings, consolidated the questions and
hypotheses into three high-level research goals below (G1-3).

A goal of clinical researchers is to develop optimal treatments
tailored for individuals by estimating their disease progression
patterns precisely. Thus, they want to be able to discover distinct
states of patients that are associated with clinical diagnosis. Early
and accurate detection of presymptomatic progression signals can
lead to early intervention and precision medicine for target patients.
To achieve this goal, clinical researchers want to characterize and
summarize the disease progression patterns by a set of biomarkers,
lab tests, and other measures in a data-driven, unsupervised manner.
Ultimately, clinical researchers hope to gain clinically useful
insights about the disease progression patterns through subjects’
longitudinal data collected from observational studies.

Clinical researchers want to understand disease progression
patterns using observation data. Understanding disease progression
patterns can be divided into three analytic goals. First, researchers
want to explain disease progression by summarizing the evolution
of selected variables (G1). Explaining disease progression includes
the discovery of distinctive states that are characterized by the
selected variables. For example, researchers want to describe the
evolution of autoantibodies that subjects possess and lose before
they get diagnosed with type 1 diabetes. In doing so, they want to
find the unique combination of multiple autoantibodies multiple
subjects show before diagnosis. Second, they want to discover
heterogeneous trajectory groups (G2). They want to find distinctive
trajectory groups of patients whose records show common patterns
in terms of the evolution of selected variables. For example, clinical
researchers want to identify typical progression patterns in terms of
the order of autoantibodies subjects gain before they are diagnosed
with type 1 diabetes. They also want to discover how many
subjects follow a specific progression pattern. Lastly, they want to
find associations between specific trajectories and variables (G3).
For example, they may hypothesize that subjects with a specific
genetic profile may show rapid progression by gaining multiple
autoantibodies simultaneously at an early age.
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Fig. 1: HMMs learn disease states based on observed attribute values
chosen by users for training the model. The trained model predicts
the most probable state sequences for a patient and assigns posterior
probabilities for each visit.

3.3 Observation Data and Hidden Markov Models

To expose distinct states of disease progression from the evolution
of observed variables, we use HMMs to model sequences of
hidden states over time on longitudinal observational data. As
Fig. 1 shows, a patient’s record includes multiple visits (black
squares) spread over different time points (t). In each visit, a
patient goes through multiple procedures, which generate observed
variables (circles). Clinical researchers choose a set of variables
(yellow circles) among them in order to discover hidden states
using HMMs; we call the variables as output variables. Prior to
training, in addition to the choice of output variables, they decide
how many hidden states they are going to infer and what constraints
they want to impose on progression dynamics. To determine the
number of states, researchers conduct cross-validation analysis
to measure the model fitness and evaluate the usefulness of the
model instances based on clinical knowledge by exploring exposed
patterns. Constraints can be interpreted as any restriction in state
transitions. If we consider a 3-state model as Fig. 1 shows, we
can set a constraint on transition probabilities so that a patient can
only advance to the next step at a time without going backward
or skipping. Researchers often choose the restrictions for more
easily interpretable trajectory groups or based on prior knowledge
about diseases (e.g., no-backward restriction for chronic diseases).
Once the training is done, researchers used the trained model to
infer hidden states for every visit. As part of inference, the model
generates posterior probabilities (blue dotted circles) over hidden
states discovered. Clinical researchers can investigate the state
sequence of subjects (pink arrows). The HMM outcomes, hidden-
state labels and posterior probabilities over them for every visit,
combined with observed variables and other demographic variables
are great sources to understand granular disease progression
patterns of multiple subjects.

3.4 Visual Disease Progression Analysis Tasks

In this section, we translate domain tasks into visualization tasks by
considering the outputs of HMMs discussed earlier. The first three
tasks (T1, T2, T3) are drawn from the three domain tasks. Then,
T4 and TS5 were added to address researchers’ need to investigate
individual patients’ records and to analyze complex subgroups,
respectively. The tasks are used to guide our design decisions on
various features of DPVis.

T1: Characteristics of states: To understand the distinct states
discovered by HMM-based models, clinical researchers want
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to view the distribution of multiple variables per each state.
Understanding what each state means is also important for users
to evaluate whether the discovered states clinically make sense.
Understanding characteristics of states includes gaining an overview
of distinct states, understanding the evolution of variables for each
state, and understanding differences between the states.

T2: State transition patterns: Clinical researchers want to
discover the state transition patterns from multiple subjects. For
each state transition pattern, clinical researchers want to investigate
details, such as the number of subjects who follow the pattern
and when subjects make transition from one state to another
state. Investigation of state transition patterns involve discovery of
distinct state sequence patterns, understanding the heterogeneity
of the patterns with respect to the time of transitions, and
comparison between trajectories by the number of subjects, speed
of progression, and how many states are involved.

T3: Relationship between trajectories and variables: Clinical
researchers want to find the association between state transition
patterns and variables like health outcomes and static variables.
For example, they want to investigate whether certain trajectories
correlate with the onset of the target disease. They also want to
find association between other inherent characteristics of subjects,
such as genetic profiles, and trajectories. Thus, they want to
view distribution of static/outcome variables for trajectory groups,
view the onsets of disease for trajectory groups, and compare the
static/outcome variables between trajectory groups.

T4: Subject details: Clinical researchers want to investigate
details by viewing state transitions, health outcomes, and other
variables of a single subject. They also want to find similarities and
differences between multiple subjects with respect to observation
counts, times, and state transition patterns.

TS5: Subgroup management: Clinical researchers build and refine
subgroups based on transition patterns, health outcomes, and
subject profiles. Then, they compare similarities and differences
among them. Subgroups are important outcomes of their research,
which need to be retained and transferable to other colleagues.

4 DESIGN oF DPVis

Based on the derived tasks, we designed and assessed multiple
views and operations and integrated them into a visual analytics
application. In this section, we introduce the design of DPVis and
how each view and interaction feature supports the user’s analytic
tasks. DPVis consists of seven view panels as Fig. 2 shows, and
each plays a different role for one or more of five tasks we described
in Section 3.4. We built DPVis using Python for the backend and
Javascript for the frontend. We used Flask, Jinja, and Django for the
web framework, and primarily used D3.js, jQuery, and Lodash to
implement UI components, visualizations, and interactive features.
In this section, we use type 1 diabetes as a running example to
describe insights and clinical explanations from observational data.
We explore disease progression patterns of 559 subjects, who were
diagnosed with type 1 diabetes at the end of their observation, from
birth cohort studies, using an 11-state HMM model. Find more
details about the study, model, and data in Section 5.

4.1

State Summary Panel (Fig. 2 (B)) contains two views, Feature
Matrix and Feature Distribution, which characterize states with
respect to observed attributes. Using each view, users can gain an
overview and details about states by viewing the distribution of

State Summary Panel
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Fig. 2: Given a dataset of patients over time and the corresponding disease state assignment per visit as determined by an HMM, DPVis creates
the following views: (A) Static Variables View shows distribution over static variables; (B) Feature Matrix summarizes states, discovered
by HMM, with means of variables; (C) Pathway Waterfall shows state transition patterns; (D) State Transition Pattern List show frequently
occurring state transition patterns; (E) Panel for Patterns and Outcomes shows subjects’ visits in detail; (F) State Sequence Finder enables users

to build and refine cohorts; (G) Subgroup List allows users to create and refine subgroups.

observed attributes per state (T1). Furthermore, users can make
sense of differences between states that are discovered by HMMs.

4.1.1 Feature Matrix

Feature Matrix summarizes how each state is manifested by
different observed attributes (T1). Feature Matrix shows a matrix
layout where a row represents an observed attribute and a column
represents a state; each cell in this layout represents the mean of
the attribute (row) values of the visits that were inferred as the
corresponding state (column). The diverging color map is used
to map the range of minimum-maximum values of each measure
to the blue-red scale across the states. Using this view, users
can understand what each state (column) means by viewing the
distribution over multiple attributes (row). In Fig. 2 (B), the leftmost
column is ’State 0’, which has cell values in mostly blue. This
indicates that the *State 0’ indicates states, where subjects have low
values for the majority of observed attributes. Thus, researchers can
note that the state is likely to be before the onset of autoimmunity.
In particular, we repeated and fixed attributes (rows) that are used
to infer states at the top so that users can quickly refer to them
while exploring state transitions in Fig. 2. At first, we considered a
heatmap-style visualization where no space exists between rows
and between columns. While the heatmap approach can be useful
to detect correlation, users had difficulty in isolating column-wise
and row-wise patterns due to the absence of borders. This can
be potentially resolved by adding highlights when users hover
particular state. However, users quickly glance at this view to be
reminded about state characteristics overview, so it is cumbersome
to hover over the view every time. Therefore, we decided to use
the button-like approach for Feature Matrix.

4.1.2 Feature Distribution

The states are probabilistically inferred by HMMs, so users
often need to understand standard deviation as well as mean

7 i % ] i Gl % N % 7 2
°

1) b b

b |

o 9 f 14 Lo

Fig. 3: Feature Distribution shows mean, standard deviation, and
histogram of an attribute ‘HEIGHT’ across 11 states.

for each observed attribute. Greater uncertainties may indicate
that it is possible to have sub-states within a single state, so
users can expect more granular, diverse patterns with the state.
In Feature Distribution, users can view mean, standard deviation,
and histogram of each observed attribute per state in a single
cell, replacing colored cells in Feature Matrix. In addition, users
can check the number of missing values per cell with a shaded
bar above each cell. Fig. 3 shows the distribution of an attribute
‘HEIGHT" across 11 states. First, there are many missing values for
the ‘HEIGHT’ measure, which can be observed by large, shaded
bars above each state. We can conjecture that such growth variables
(e.g., height, weight, BMI) were not regularly measured through
the observational study. With the limitations in mind, the mean and
standard deviation shows the steady increase of HEIGHT within
each of three notable state sequences, namely 0-2, 3—7, and 8-10.
Within each block, the mean height increases. Also, the last state of
each block shows narrow intervals (standard deviation) and dense
histogram, which may indicate that those last states are likely to
be ‘sink states’ where subjects get diagnosed with Type 1 Diabetes.
We implemented several ways to customize the view further. First,
users can switch and toggle back to fit the scale for each cell. If
users choose a consistent axis, users can compare the number of
visits assigned to states. If users switch to fit the scale for each
state, users can clearly observe distribution among individual state,
which could be visually hidden on a common scale. Second, users
can simplify the view by hiding bars. Users revealed that it is easier
to compare mean and variance between selected subgroups and all
subjects when there are no distracting bars.



Fig. 4: Pathway Waterfall shows state transition pathways using parallel beeswarm plots and trajectory lines tied with force edge bundling: dot
(visit), y-axis & color: state, x-axis: age. Vertical paths show transitions between states. Left: state transition patterns of all subjects over; Right:
users filtered by state transition from state 3 to 4 before 20 months of age.

4.2 State Transitions Panel

Pathway views show various representations of state transition
patterns over sequences of visits or over time (T2). Together with
State Summary Panel, State Transitions Panel (Fig. 2 (C)) includes
views that help users to understand subjects’ state transition patterns.
State transition patterns can be represented in many different ways
as shown in previous studies in Section 2. State Transitions Panel
includes five views that users can choose from. Each view has
advantages and disadvantages. In the following sections, we discuss
the design of views and their trade-offs.

4.2.1 Pathway Waterfall

Pathway Waterfall shows subjects’ state transition patterns using
parallel beeswarm visualizations overlaid with individual subjects’
trajectory lines. As Fig. 4 shows, we first divide the vertical space
by the number of states, each of which represents a state. A dot
indicates a visit of a subject, which is colored corresponding
to its state and placed on the timepoint (X) and the state space
(Y). In this process, we show density of visits while preserving
their timestamps using the beeswarm algorithm [14]. Then, we
visualize trajectory lines for individual subjects that follow the
state transition pathways over time. To reduce the clutter while
preserving the transition points, we use a modified version of force-
edge bundling technique [25]. To contrast the patterns more vividly,
we used a dark background color. A participant commented on
the design of Pathway Waterfall, “it looks like Mardi Gras beads
hanging on the wall. Easy to see where (in which state) they hook
and tangle up (congested departing/landing time periods per state).”

The overview in Fig. 4 (Left) shows three distinctive trajectory
groups, showing state transitions: i) 0-2; ii) 3-7; iii) 8-10. Together
with state characteristics found using State Summary Panel, we
observe that each of trajectory group starts with no autoantibodies.

with respect to their first autoantibodies: i) multi-AAB First (0-2);
ii) TAA First (3-7); iii) GADA First (8-10). We may want to
create a subgroup among the IAA First (3-7) trajectory, who gains
TAA early before the age of 20 months. To achieve the goal, we
apply filters by specifying transition points, as shown in Fig. 4
(Right). The updated figure shows a onward progression pattern
of the subgroups. Those who early progressed into IAA (4) seem
to further possess more autoantibodies in early ages, as shown in
thicker vertical paths drawn in the leftmost area. Users can also
observe outliers who progressed beyond state 7 into states 8 and 9.

4.2.2 Pathway over Observation

Pathway over Observation allows users to gain an overview of
transition patterns by comparing the height of stacks over visits
first (T2). Pathway over Observation shows state transition patterns
of multiple subjects using the sankey diagram approach. As Fig. 5
shows, the view is made of nodes and paths. Nodes are vertically
stacked for each visit (x-axis), where each stack’s height represents
the number of subjects with the corresponding state at the visit.
Paths are drawn horizontally between two consecutive visits, where
each path connects a state (State-A) of the previous visit (Visit-0) to
another state (State-B) of the current visit (Visit-1). The thickness
of each path represents the number of subjects who transitioned
from State-A to State-B over the visits between 0 and 1.

The main advantage of this view is summary of state transitions
over a series of observations. Sankey diagrams allow users to
compare the volume of transitions between consecutive visits.
Alignment allows users to understand the state transition patterns
with respect to specific states. Fig. 5 (Left) shows, by shifting
the alignment to focus on the first trajectory group (Multi-AAB
First), we observe that subjects in the trajectory tend to have zero
autoantibody (green; state 0) in early age, many of them gain
multiple autoantibodies (yellow; state 1) as they grow, but rarely
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Fig. 5: Pathway over Observation summarizes state transition pathways for subjects over observed visits. Left: Alignment Handle rearranges
nodes and paths with respect to a new anchor point (between states 2 and 3), showing the proportion of State 0 decrease over first 10 visits;
Middle: Pathway over Observation shows pathways for subjects who started their visit with State O (green); the first node is highlighted in
orange after users click to filter; Right: Users converted the view to only show start and end nodes and the path between the two nodes, showing

in which state subjects seroconverted and get diagnosed (onset).
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Fig. 6: Pathway by Time Unit shows state transition pathways. Left:
Pathway by Time Unit shows stacked bars aligned at an anchor point
between states 3 and 4; Right: Users set a filter by clicking on State 4
at subjects’ age between 4 and 5 years old.

lose GADA and IAA (purple). Furthermore, users can simplify
the state transitions using the biparite Sankey diagram so that they
can focus on the relationship between state transitions and health
outcomes. Fig. 5 (Right) shows sankey diagrams that summarize in
which states subjects show seroconversion (left) and onset of type
1 diabetes (right). The first autoantibody state per each trajectory,
namely state 1 (yellow), state 4 (blue), and state 9 (purple), are
the most common states for seroconversion. On the other hand,
subjects get diagnosed with type 1 diabetes in various states. The
downside of this approach is that it aggregates individuals, so users
cannot view or choose individual patients from this view.

4.2.3 Pathway by Time Unit

Pathway by Time Unit aggregates state transitions with respect
to a time unit of users’ choice. Thus, the patterns that one can
observe are similar to Pathway over Observation, but it shows
the temporal patterns of state transitions. In Fig. 6 (Left), the
overview shows state transition patterns aggregated per subjects’
age in ‘years’. State 3 (red), which represents no autoantibody, is
the most prevalent state for subjects. It is interesting to observe
that some subjects show early transition from no autoantibody
(State 3) to IAA (State 4) before one year old, shown as a stack
with red-to-blue gradient on the leftmost bar. We can set filters
by showing subjects who went through State 4 (blue) at their age
between 4 and 5 years old as Fig. 6 (Right) shows. The majority
of subjects possessed TAA at State 4 a year before and many of
those did not lose or gain a new autoantibody afterward, as seen
from bars in blue throughout the observed periods. The advantages
and disadvantages of this approach are similar to those of Pathway
over Observation. One distinguished advantage is to be able to
show state transition with respect to ages rather than visits, which
is often more relevant to clinical observational research.

4.2.4 State Transition Chord Diagram

State Transition Chord Diagram shows the overall state-to-state
transition patterns over all consecutive pairs of observations from
subjects using a radial network diagram. The view can be used to
understand the overall frequency of state transitions (T2). This view
serves as an explanatory summary of the state transition learned

-

Fig. 7: State Transition Chord Diagram shows a summary of state
transitions between all pairs of consecutive states.Left: It summarizes
state transitions for all subjects; Right: It shows subjects who had
State 4 between 3 and 4 years old.

Kyl

K] ) @@ 44> astimes
w0 e 000 @@
™ ® 6 6 @O @O

" @@ " @0 @80
w® 6 60 )

" ®00 @50 » 8000
000 = 000 * @00
m0000 2 G000 7 @50
%0000 = 0080 * 0000
000 2 660 * 000EY
me 000 n@e8 .- * @980
ER R R @00 = 0000

Fig. 8: State Transition Pattern List shows the result of pattern mining
algorithm (BIDE) [70]. Left: The top-50 most occurring state transition
patterns; Right: A new pattern list for the cohort who were breastfed.
from the particular setting of HMMs. It allows users to compare the
number of visits per state by viewing the size of the nodes (states)
on the circular layout and to compare the transitions between two
states by the size of arcs connecting two nodes inside the circular
layout. As Figure 7 (Left) shows, state transitions occur rarely. On
the other hand, a cohort with subjects who had IAA with State 4
(blue) between ages of 3 and 4, as shown in Fig. 7 (Right) shows
a greater proportion of transitions among States 3 (red), 4 (blue),
and 5 (orange) than the rest of states. Users can filter subjects who
contain specific subpatterns by clicking an edge of interest T5.
State Transition Chord Diagram summarizes state transitions by
frequency. The summary is useful for users to determine the overall
prevalence of states and their transitions. Such patterns cannot be
easily extracted in other views. On the other hand, the view does
not provide any temporal context (age) of state transitions. Thus,
the view is useful along with other views like Pathway Waterfall.

4.2.5 State Transition Pattern List

State Transition Pattern List in Fig. 8 shows a list of frequently
occurring state transition patterns mined from all consecutive
observations (T2). By running the BIDE algorithm [70] on subjects’
state sequences, we first generate the most frequently occurring
state sequence patterns. To avoid filling up the list with fine granular
patterns, we filtered top 50 patterns in terms of the number of
unique subjects with the corresponding pattern; we also do not take
into account any single-state patterns. Then, we list all patterns,
where each pattern is a row of state circles, in a vertical order,
as shown in Fig. 8 (Left). Inspired by Peekquence [36], we also
visualized the frequency of the patterns as a bar chart next to each
pattern. As Fig. 8 (Right) shows, once users set filters for those
who possessed TAA (state 4 in blue) between 4 and 5 years old,
the view expands and introduces yet another list of patterns. By
doing so, users can check the ranked list of patterns for those who
possess and maintain IAA at early age.

As discussed, each view provides a unique perspective of
state transition patterns. It is impossible to show the different
perspectives in a single view, which motivates the options we
have provided. Furthermore, different views enable opportunities
for refining subgroups. For instance, users can create a subgroup
by setting filters on Pathway Waterfall, State Transition Chord
Diagram, and State Transition Pattern List. In the design process,
we learned that supporting subgroup building activity is facilitated
by multiple, different views, which we will revisit in Section 6.

4.3 Panel for Patterns and Outcomes

Panel for Patterns and Outcomes (Fig. 2 (E)) shows individual
subjects’ observations over time (T3). The panel includes two
views: 1) Dual Kernel Densities View; 2) Subject List View.

4.3.1 Dual Kernel Densities View

Dual Kernel Densities View shows the two independent 1-D Kernel
Density (KD) diagrams, each with increasing y-axis (density) in the
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Fig. 9: Panel for Patterns and Outcomes shows 1) Dual Kernel Densities
View and 2) Subject List View. Dual Kernel Densities View overlays
additional dual Kernel Density Diagrams for a selected cohort, and
Subject List View highlights subjects in the cohort. Users can open a
popup to view posterior distributions.

opposite direction, upward and downward, respectively, as Fig. 9
shows. The KD above the timeline shows the density of time at
the onset (e.g., diagnosis of type 1 diabetes) (T3). Subsequently,
the KD below the timeline can be freely chosen by users, with the
dropdown menu on the top-right corner, among the secondary onset
variables (e.g., seroconversion for type 1 diabetes) (T3). Each KD
includes an arrow indicating the mean age of its onset for subjects.
Once users set filters, the KDs introduce and overlay brighter KDs
inside, which indicate KDs for the selected cohort (TS). Fig. 9
shows the cohort who were never brestfed. The density chart in
orange above the timeline suggests that the cohort” mean diagnosis
age is at 8-9 years old with a peak around age 12 and a long tail
towards older ages. On the other hand, the purple density below the
timeline indicates that the cohort has earlier seroconversion than
the overall population (light purple) (T3).

4.3.2 Subject List View

By viewing the state sequences of individual subjects in Subject
List View, users can inspect the details at the patient level (T3).
Subject List View provides a list of subjects’ observations as dots
(visits), color-coded based on the state, over a timeline. For each
subject, we draw a narrow, red rectangle below a dot for a visit
with the onset of the disease and an asterisk symbol above a visit
with the onset of the secondary onset variable (T3). In Subject
List View, users can choose to show the posterior distribution over
all states as a pie chart. By observing how slices of pies change
their values over time, users can learn states of visits, inferred
by the HMM (T1). Fig. 9 shows the cohort of patients who were
never breastfed. Most dots present full circles (dominant with a
slice), which show model’s confidence in the state assignments.
However, a subject on the popup shows evenly-spread posterior
distrbutions over 11 states for the last two visits, which signify
uncertainties of state assignment for those visits. The subject shows
seroconversion (purple star above pie) and diagnosis (red underline
below pie) at the same visit before 1 year old. Both onsets rarely
occur at the same visit, which is why the model thinks of the visits
as ‘uncertain’ with posterior values spread over multiple states.

4.4 Static Variables View

Static Variables View (Fig. 2 (A)) shows a list of selected measures
that do not change over time in horizontal bar charts. Users can use
this view to show the general summary of subjects in terms of their
static measures, such as genetic profile, gender, race, and family
history status. Using this view, users can build cohorts based on
factors related to subjects’ genetic characteristics and biological
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Fig. 10: State Sequence Finder allows users to build and refine state
transition patterns. Users can adjust filtering criteria (e.g., time of visit)
for each node and edge on a context menu.

attributes (T4). For example, users can click on Y’ on the "bfever’
bar chart and '’F’ on the 'SEX’ bar chart to create a cohort that
includes only female subjects who were breastfed.

4.5 Subgroup Builder: Build, Refine, Compare, Retain

In this view group, users build, refine, and maintain subject groups
using a variety of operations.

4.5.1 Subgroup List

Subgroup List (Fig. 2 (G)) shows a list of subject cohorts that
have been built and kept by the user. As mentioned in previous
subsections, users can build cohorts using any of the views
described above; whenever users make updates on the cohorts,
the changes are automatically saved in this view (T5). The height
of each bar corresponds the relative number of subjects within
each cohort. The title can be modified with free text so that users
can keep short descriptions about the cohort. As users hover over
each bar, a popup view shows the description of filters, namely
a list of pairs of an attribute name and its value range, used to
create the corresponding cohort. Users can also export and import
cohorts from existing static variables by choosing one variable on
the dropdown menu at the top-right corner (TS5).

4.5.2 State Sequence Finder

State Sequence Finder is a way users can freely define and refine
queries to create a cohort based on state transition patterns (TS5).
We built this view based on users’ feedback. Users want to build
cohorts by setting sophisticated filters using state transition patterns.
We initially considered a command-line interface, where users can
‘type’ to build a query using some syntax language like SQL. We
later found that our users can face difficulties in learning how to
use the syntax language. Thus, we decided to build a graphic user
interface that allows users to interactively build state sequence
query. As Fig. 10 shows, the view includes a canvas, where
users can graphically create transitions of interest by using state
nodes. The view initially shows an empty canvas with horizontally
arranged state nodes with an additional dummy node (in total,
N+1 nodes). Using a drag-and-drop interaction, users can express
the state transition patterns that they are looking for. Though the
node-link representation is intuitive to understand and learn how
to build, it may sacrifice expressivity. Users may want to refine
their search based on other attributes related to states (nodes) or
transitions (edges). For example, instead of just state 4, users
may want to filter state 4, which occurred in specific ages. Thus,
we added a popup menu for users to express more sophisticated
constraints on states and transitions. Every node and edge has
its own properties shown with labels, which can also be edited
on a popup window. Each node has three properties: 1) time, 2)



node_at, and 3) posteriors, and each edge between two nodes has
two properties: 1) the maximum time between nodes and 2) the
sequential order of the two nodes. Once users configure patterns,
they hit the “Filter by Pattern” to execute the query. Fig. 10 shows
that a user built a query using two nodes: state § (no autoantibody)
and state 10 (GADA and IA2). The pattern includes the following
configurations: 1) State 8 occurs between age 0 and 80 months at
the beginning visit of the subject; 2) State 10 occurs between age
after 120 months at the final visit; 3) both states are assigned with
posterior probabilities greater than or equal to 0.75.

5 CLINICAL STUDIES OF TYPE 1 DIABETES

In this section, we introduce 1) a usage scenario that demonstrates
how DPVis help users explore disease progression pathways and 2)
users’ experiences of using DPVis.

5.1

This section briefly explains the long-term collaboration with
clinical researchers in type 1 diabetes, who contributed to the user
experiences and usage scenarios. As part of the T/DI study group,
we organized four quarterly workshops in four different cities in the
US and Europe between October, 2018 and October, 2019. The goal
of each workshop was to gain clinically meaningful insights into
subjects’ trajectories prior to diagnosis. In each workshop, clinical
researchers and two leading authors of the paper used DPVis T1D
to explore T1D data collected from multi-site birth cohort studies.
During the workshop, we conducted Pair Analytics [2], where
the two leading authors drive the tool and clinical researchers
interpret the patterns, formulate hypotheses, and derive clinically
meaningful insights. As a result, we derive the usage scenario that
leads to key insights, which will be presented to an upcoming
Diabetes conference, in Section 5.2. We recruited nine clinical
researchers, who actively participated in the workshop sessions,
for the interview session to ask questions about their experiences.
In the open-ended discussion with each, we focus our discussion
on the cost and value of DPVis for clinical research. We recorded
the conversation, which took an hour on average, and coded the
transcribed scripts using grounded theory [49]. We report the results
in Section 5.3. Though the study is part of large study consortium,
the process and outcome reflect the goal of Multi-dimensional
In-depth Long-term Case study (MILC) [62].

Long-Term Collaboration with Study Group

5.2 Usage Scenario

Our users investigated disease progression patterns from 559
subjects who were diagnosed with type 1 diabetes (T1D), us-
ing observational data from three prospective clinical studies:
DiPiS [29], DAISY [59], and DIPP [50]. Researchers decided
to model the subjects’ progression data using Continuous time
HMM (CT-HMM), a variant of HMM. They trained models
with a range of parameters, primarily the number of states, from
2 to 20. They focused on autoantibodies (AAB) variable due
to recent interest and work in the type and number of AAB
development in the T1D community. For training the autoantibody
(AAB) model, they used three observation variables, all markers
of disease progression: glutamate decarboxylase autoantibody
(GADA), insulin autoantibody (IAA), and islet autoantigen-2
autoantibody (IA2A) (More studies on autoantibodies can be found
in [68]). To test their hypothesis, they trained the models with
a range of states (N = [2, 20]). After testing the models with
multiple rounds of cross-validations, they narrowed down to the
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best performing model based on the log-likelihood scores on the
validation dataset: an 11-state autoantibody (AAB) model.

What are the states discovered by the 11-state model (T1)?
Users open Feature Matrix and State Summary Panel to interpret
the states with respect to the evolution of AABs. They found that
there are at least three low-AAB states, which are states 0, 3, and
8, highlighted in red in Fig. 11a. They are characterized as buttons
in blue for the majority of rows in Feature Matrix, including the
three AABs, which indicate that the three states represent young,
early states prior to onsets of any AAB. The remaining states can
be categorized into groups with respect to the number of AAB:
(1) 1-AAB state: 2, 4, and 9; (i1) 2-AAB state: 4, 7, and 10; (iii)
3-AAB state: 1 and 6. Users found that state 4 can be categorized
into 1-AAB, 2-AAB, or both because it has .56 probability in
GADA,; state 2 can be categorized into 2-AAB, 3-AAB, or both
because it has .59 probability in IAA, as Fig. 11a highlights in blue.
This indicates that transitions including state 2 or 4 can also be
subdivided into more granular trajectory groups. After inspecting
the state characteristics, users confirmed that the 11-state model
expose diverse states represented by various combinations of AABs.

Together with the characteristics of individual states, users
set out to understand disease progression patterns (T2) and their
relationship with onsets of diagnosis (T3). The overview shows
that there are three large distinctive trajectory groups, each of
which follow state transitions: i) 0-2, ii) 3-7, and iii) 8-10, which
are named as “Multiple-AABs First”, “IAA First”, and “GAA
First” groups, respectively, as Fig. 11b shows. The names are
given as above by clinicians because the very first AAB(s) subjects
gained provide clinically meaningful implications. Using State
Sequence Finder, users create subgroups in Subgroup List for
detailed investigation (T5). The number of subjects for the three
trajectory groups are 221, 224, and 104. There are 10 subjects
who do not belong to one of three because they show transitions
across multiple trajectory groups: 7 subjects belong to Multiple-
AABs First and IAA First, and 3 subjects belong to IAA First and
GAA First. Looking at the overview of transitions, users notice
key differences between three trajectory groups with respect to
transition ages. Pathway Waterfall shows that the vertical paths
drawn in the “IAA First” group are very dense especially early
in their ages in comparison to the other trajectory groups. To
investigate the association between average age for diagnosis and
seroconversion and different trajectory groups, users view Dual
Kernel Densities View that shows density charts for diagnosis (red)
and seroconversion (purple). Fig. 11c shows that the “IAA First”
group has earlier seroconversion and diagnosis than the population.

Following the trajectories, they found that some subjects were
assigned State 0 (no autoantibodies) for all of their visits, yet they
were diagnosed with T1D. To investigate this cohort further, they
queried those who started and ended their observations with State
0 using State Sequence Finder (T4), as Fig. 11d shows. The query
returned 11 subjects, who were diagnosed around 119 months (10
years) old, according to Dual Kernel Densities View. Among the
11 subjects, 6 of them seroconverted with IAA, and the rest had
no seroconversion, according to Static Variables View. Subject List
View shows posterior probabilities over 11 states for each visit, and
there are many visits that show nontrivial posterior values for states
other than state 0 (T4). Based on the patterns, users speculated
two interpretations. First, the negative autoantibody at the last visit
may be measurement error. Second, the subjects may represent
an endotype characterized by factors that are not captured in our
data [4]. They were intrigued and requested more information.
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Fig. 11: The figure shows how users explore disease progression patterns using DPVis following the scenario in Section 5.2.(a) Users view and
compare characteristics of states (T1); (b) users gain an overview of state transition patterns (T2); (c) users probe the relationship between
health outcomes and disease progression trajectories (T3); (d) users check details of subjects and manage subgroups (T4, TS).

5.3 User Experiences on DPVis
This section reports the summary of interviews with nine clinical
researchers who participated in the workshop sessions. Eight out
of nine researchers had 10 or more years of experience (min: 3
years; max: 40 years) with clinical or healthcare research. Five out
of nine researchers were practicing medical doctors and clinical
researchers, who had Doctor of Medicine in various disciplines
related to diabetes research; The rest had degrees in statistics,
computer science, and industrial engineering and had experiences
with clinical and medical informatics. They had some knowledge
and experiences with HMMs and visualizations in their research.
DPVis reduces the effort required to analyze observational
data by providing interactive subgroup analysis. Participants
reported that the major benefit of DPVis is to save time and effort
for analyzing observational data. P2 mentioned that understanding
disease progression patterns (7'7-2) is “definitely doable without
DPVis, but not easy, very difficult. Using DPVis makes it so much
easier to do so.” P9 mentioned that it helps her “quickly test
an idea about whether my hypotheses are worth investigating.”
Participants described the utilities that DPVis uniquely provides.
First, participants appreciated that the tool allows them “to see the
entire cohort and to single out individuals at the same time” (P4).
Second, it was regarded useful to be able to “build cohorts without
scripts” (P1). The cohort building activity (75) allows users to
validate whether “what one has published or investigated earlier
makes sense in other data, graphically” (P7). Third, participants
were able to conduct sensitivity analysis repeatedly by refining
subgroups and extracting patterns from data (75): “You can conduct
sensitivity analysis again and again. You can slightly change

what you look at. That’s a real strength. [...] It lets users test the
assumptions on particular subgroups. Even kinda test the robustness.
Once you identify a pattern, then you could ask: it this pattern
robust even after excluding a particular study [dataset]?” (P3).
DPVis helps users understand HMMs transparently. De-
spite the perceived usefulness of HMMs, participants had concerns
about how to interpret them, but DPVis was helpful to mitigate
the issues and to use the model in a more transparent manner.
HMMs are generally regarded as useful to characterize disease
progression patterns of individual patients (77). P1 described the
usefulness as: “HMMs are useful to understand the severity of
diseases. It quantifies disease states and lets users find patterns.”
However, participants were aware of limitations with regards to how
to interpret the outputs. HMM outputs alone were not perceived as
intuitive because “there are always uncertainties in state assignment”
(P7) and “‘states seem like black boxes” (P8). It is also challenging
to interpret model outcomes without considering and keeping in
mind how the data were collected: “Censoring is a big issue [in
observational studies]. Everything we look at is very biased. Hard
to get clarity on what data its trained on” (P9). What DPVis
provides is to translate the HMM outputs into visual patterns. P4
said “The way it sets up helps to explain the model. It mitigates
underlying criticism about the black-box nature of the model.”
P7 also commented “You can kind of see the quality of data:
sampling and visit intervals. Thats quite useful.” DPVis is agnostic
to model configurations (e.g., number of states) or data quality
(e.g., sampling frequency) and lets users ask difficult questions to
answer without visualizations: “By looking at different models and
data using DPVis, we can ask questions like, is there any genetic



polymorphism why children have different trajectories?” (P4).

Multiple views of DPVis help users summarize, search pat-
terns, and build subgroups of disease progression trajectories.
Among many views, Pathway Waterfall and Feature Matrix were
considered the most useful. P2 also mentioned “[Pathway Waterfall
] catches my eyes immediately. It shows how people progress
across different states over time.” Pathway Waterfall shows the
trends without hiding individuals (72), as participants noted “It
shows the impression of the volume of subjects. It shows how
people travel across states over time in different ways. Summary
(aggregated visualization) hide those” (P3) and “Instead of quantiles
and distributions, you can see individuals” (P5). Participants find
Feature Matrix useful to characterize the states discovered by
HMMs. P1 described the column of Feature Matrix as “semantics
of states”, which show what each state is (77). Subject List View
were helpful to check the details: “easy to understand, and there
you can see huge variation among subjects” (P7). Dual Kernel
Densities View were useful to determine characteristics of cohorts
(T3): “it helps you determine the samples’ rapid progressors, slow
progressors, or non progressors” (P4). To build and refine subgroups
(T5), State Sequence Finder was regarded helpful: “I really love
State Sequence Finder. I think its very difficult to query state
sequence patterns from longitudinal data. Using State Sequence
Finder, I can say anybody who had GADA and then IAA, I want
to see those people.”

It takes time to learn how to use DPVis. Participants reported
that it takes time and effort to learn how to use DPVis. The major
difficulty was understanding and learning how to use the multiple
views. P1 revealed, “each view makes sense, but at first I did
not know where I need to look to understand transitions and
semantics of states.” P6 also commented, “Haven’t seen this kind
of visualization before, it is not easy to catch what it means
at first [...] it’s not something that easily pops up, it’s more
like you spend time and effort.” The difficulties come from not
having a computational background and lack of experience with
visual analytics applications. P2 mentioned, “some views can be
difficult to understand, depending on his/her background.” P5 said,
“Somebody who doesn’t know HMMs need to learn a bit about
HMMs first.” P9 also added, “It might be misleading for those who
are not familiar with the algorithm part.” However, all participants
agreed that they were able to understand how to use DPVis after
the series of workshops. The key is to use DPVis multiple times
repeatedly and to actively formulate and validate hypotheses on
real data. P7 mentioned “It takes time and effort and many trials
and errors. You have to be very eager to ask questions in order
to understand them.” P4 commented, “The series of workshops
and discussions really help me to better understand the tool. [It
shows] the way one builds the analysis using the cohorts from the
literature. I immediately grasp the way the data displayed.”

Users want to provide feedback to the HMM learning pro-
cess. Participants shared ideas for future work. Some participants
wanted to add more automated analysis. P1 wanted DPVis to
“automatically identify and highlight outliers in Pathway Waterfall.”
Participants wanted to go beyond interpreting outcomes of trained
HMM and to steer the model. P4 wanted an ability “to modify
states and to establish new states.” P9 also added “Allow me to
specify my own state. I would like to train a model with states |
define. I would like to see how the dataset fits my mental model.
It’s a human-supervised model. I would like to have more control
over the training part.” Participants also want to add statistical tests
to confirm the patterns they find in the visualization: “Statistics will
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confirm the trends and help us build clinical trials. Tests like Chi-
Square, T-test, [...] to test difference between subgroups in terms
of progression rates and speeds” (P4). Some participants suggested
the potential use of DPVis for clinician-patient interaction. P7
wanted to use Pathway Waterfall to explain a patient’s progress:
“Id like to have his/her waterfall with the background of others.
My study subjects are at some point of the trajectory, so Id like to
use this to show where the subject is now. Its more like a clinical
tool. For patient education, I think it will be useful. For clinician
education, it will also be useful.” P4 said “The utility of this tool
could be for physicians, families, and others, who are interested
in the particular person in relation to others. I think it will be a
fantastic educational tool for clinicians, scientists, and families.”

6 DiscussiON

In this section, we discuss some implications of DPVis, lessons
learned from our study, and provide some thoughts for future work.

6.1

Clinical researchers want to understand why (etiology) and how
(pathogenesis) a certain disease develops from longitudinal ob-
servational study data. HMMs are great ways to summarize the
course of disease development. The states discovered by HMMs
are explainable by associated variables (G1) and naturally form
trajectories that share the same state transition patterns (G2).
However, as our participants revealed in Section 5.3, HMMs
alone are not interpretable nor useful for clinicians to understand
and explore the disease progression patterns effectively. DPVis
allows users to understand the state characteristics and disease
progression patterns transparently through multiple, coordinated
visualizations. Furthermore, the interactive features of DPVis, such
as State Sequence Finder, allow users to flexibly define subgroups
and to test their relationships with various health-related outcomes
(G3). As Section 5.2 describes, users can gain clinically meaningful
insights by driving their analysis using DPVis. The three clinical
research goals (G1-3), the five analytic tasks (77-5), and the design
of DPVis can provide useful guidance for future visual analytics
applications for clinical research. Our study can provide insights
for other domains, where research questions involve summarizing
and understanding temporal event sequence patterns.

There are recommendations and limitations when one uses
HMMs and DPVis. As mentioned in Section 5, it is recommended
to train an HMM with less than 20 states in order to maximize
the interpretability. Users can use any number of variables for
running an HMM. In some cases, users use latent variables,
which are reduced from original variables using dimensionality
reduction algorithms, for inferring states. This can also reduce the
interpretability of the model. Pathway Waterfall can suffer from
overplotting when the number of subjects and the number of visits
increase. It had no issues of overplotting for one of the largest
observational study data from T1DI described in Section 5.2. In
case of overplotting, one can adjust the canvas size and/or hide
dots in Pathway Waterfall temporarily. Feature Matrix could be
overwhelming to users due to numbers written over bubbles, so it
is recommended to only show the numbers when requested.

HMMs and DPVis for Disease Progression Patterns

6.2 Supporting Subgroup Building for Clinical VA

Our study demonstrates the usefulness of subgroup building
activities (795) in clinical visual analytics. As Section 5.3 reports,
users want to test hypotheses from prior literature and to conduct
sensitivity analyses repeatedly by stratifying subjects into relevant



subgroups. Thus, it is very important for a visual analytics system to
support creating and updating subgroups. While designing DPVis,
we discovered that every view can serve as a tool to create and
refine subgroups of subjects based on users’ constraints. Since every
view has its own perspective, users can express their constraints in
different ways. By combining multiple constraints, users can refine
cohorts that meet their analysis goals. For instance, a user can
set a filter based on time of state transition using State Sequence
Finder and another filter based on heights of subjects at a state
using Feature Distribution. The flexible methods of DPVis for
constructing filters was useful for our experts to formulate and
test their hypotheses. The features blends well with users’ analytic
workflow, where they define and express cohorts and test their
hypotheses by comparing the patterns of those different cohorts.

Supporting subgroup building activity can be adapted into
future clinical visual analytics applications. Clinical researchers
often test hypotheses by comparing different subgroups. The
subgroups are frequently referred to with special names given by
clinicians or previous literature, and they are the main character of
stories they discuss in order to gain clinically meaningful insights.
For instance, clinical researchers speculate whether the “Multiple-
AAB First” group, discovered in Section 5.2, can be replicated
in other observational studies. Future researchers can investigate
methods to replicate subgroups from prior literature in an automated
or human-in-the-loop approach, as requested by participants in
Section 5.3. In future work, we aim to investigate intuitive ways
to build cohorts, which include drawing expected patterns over
time-series visualizations like AxiSketcher [34].

6.3 Design Study Reflection: Working in a Triad

An important key to success of a design study is to effectively
facilitate communication between experts in their domains, mainly
health professionals, statisticians, and visualization experts. By
combining the pieces from the triad of experts, we can build an
effective visual analytics application. Though it is essential for
the experts to carefully evaluate each other’s inputs, it is very
challenging due to the knowledge gaps between domains. What
facilitates effective communication between experts in different
fields can be the visualization itself [35]. Throughout meetings,
experts discussed over DPVis, which resulted in several changes to
try out in the next phase. Therefore, what makes a visual analytics
tool interpretable and engaging for users is how effectively the
representations facilitate communication and new insights among
the team. DPVis was used to translate a fundamental question from
health professionals about HMMs, “what is a state and how does it
differ from clinical stages?” As Section 5 revealed, DPVis allowed
our team to understand how multiple states may fit a clinical stage
and to hypothesize more granular states that can describe within
and outside clinical stages. An expert also reported that Pathway
Waterfall allowed him to make sense of the overall scale and
dimension of patients’ visits over time. In the meetings, we gained
numerous insights into the data aided by the various visualizations
presented in this paper. In the end, the design process takes long
but mutual learning across domains as Hall et al. [24] nicely depict.

6.4 Learning Curve, Uncertainties, and Trust

We find that clinicians often encounter problems while under-
standing layered, unknown uncertainties in the visual analytics
pipeline. First, users need to understand how multiple views are
set up. Second, they need to understand what the underlying model
conveys in terms of its inputs and outputs. Third, they also need to
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know how each original study was designed and how the subjects
were sampled and measured. Depending on the background of
users, they might fall into any of the three problems, lose trust in
the visualizations, and/or make false interpretation of the results, as
Sacha et al. provides [60]. We overcome the issues through a series
of workshops. Participants reported that the key to overcoming such
problems was to repeatedly formulate and validate hypotheses with
small examples from real data. Participants often expect insights
to pop out without any actions. It is important for them to keep
in mind that the clinicians need to drive the analysis by actively
formulating and validating hypotheses. In addition, designers need
to become semi-experts in clinical and analytic domains by actively
engaging with the end users for a long period of time. We believe
that clinicians start engaging with the tool when they are convinced
by useful findings, insights, and hypotheses proven through the tool.
Thus, designers of the system need to spend time in understanding
how the model works and interpreting the results in clinical context.
It is often very difficult to acquire additional skills in machine
learning and clinical domains. We believe that tight collaboration
through a study group will be useful to learn the perspectives of
clinicians. The design study protocol clearly specifies the role of
liaison, which we need to pursue in order to properly implement
the visual analytics approach for medical experts [64].

7 CONCLUSION

In this work, we conducted a design study with clinical researchers,
including physician scientists, statisticians, and visualization ex-
perts, to develop a visual analytics application for exploring disease
progression pathways and their interaction with various measures.
As a result, we developed DPVis, which seamlessly integrates
HMMs and provides views and interactive features that facilitate
users to formulate and test hypotheses by iteratively constructing
multiple subgroups based on state transitions and distributions
over multiple measures and then analyzing and comparing them.
The usage scenario and user experiences sections demonstrate the
usefulness of the application to gain a summary of disease progres-
sion trajectories transparently, to construct subgroups in a flexible
manner, and to characterize the patterns using relevant health
outcomes. Our collaborators have been continuously researching
disease progression patterns for type 1 diabetes, Huntington’s
disease, and Parkinson’s disease using DPVis. In future work, we
plan to extend DPVis so that users can visually supervise the
training process of HMMs. We also plan to apply DPVis into
clinical studies of other diseases (e.g., Alzheimer’s Disease).
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