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Fig. 1. CONCEPTEXPLAINER provides interactive concept-based explanations on deep neural networks (DNNs) at global/class/instance
levels via a coordinated visual analytics interface connected to a backend processing pipeline. A full description of the interface design
is given in Sect. 4.4; this image also shows actions taken during the usage scenario described in Sect. 5.2.

Abstract—Traditional deep learning interpretability methods which are suitable for model users cannot explain network behaviors at the
global level and are inflexible at providing fine-grained explanations. As a solution, concept-based explanations are gaining attention
due to their human intuitiveness and their flexibility to describe both global and local model behaviors. Concepts are groups of similarly
meaningful pixels that express a notion, embedded within the network’s latent space and have commonly been hand-generated, but
have recently been discovered by automated approaches. Unfortunately, the magnitude and diversity of discovered concepts makes it
difficult to navigate and make sense of the concept space. Visual analytics can serve a valuable role in bridging these gaps by enabling
structured navigation and exploration of the concept space to provide concept-based insights of model behavior to users. To this end,
we design, develop, and validate CONCEPTEXPLAINER, a visual analytics system that enables people to interactively probe and explore
the concept space to explain model behavior at the instance/class/global level. The system was developed via iterative prototyping to
address a number of design challenges that model users face in interpreting the behavior of deep learning models. Via a rigorous
user study, we validate how CONCEPTEXPLAINER supports these challenges. Likewise, we conduct a series of usage scenarios to
demonstrate how the system supports the interactive analysis of model behavior across a variety of tasks and explanation granularities,
such as identifying concepts that are important to classification, identifying bias in training data, and understanding how concepts can
be shared across diverse and seemingly dissimilar classes.

Index Terms—Explainable AI, Concept Activation Vectors, Interactive Visual Analytics

1 INTRODUCTION

Deep learning has led to tremendous advances across a number of
fields, including speech recognition, medical applications, computer
vision, and autonomous vehicles [8]. Unfortunately, the complexity and
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inherent opaqueness of neural networks imposes significant difficulty in
understanding the behavior and inner workings of models [6]. As deep
learning is increasingly employed in today’s society, it is important
that diverse groups of people (e.g. model users “who may have some
technical background but lack expertise in neural network develop-
ment” [19] in AI) are able to understand and interpret the predictions
made by AI models [49]—the explainable AI (XAI) subfield supports
the development of tools and techniques to support this process [50].

Generally, interpretability of trained neural networks is achieved
either by (1) revealing the neural architecture, and how signals flow
through the pipeline, or (2) using explainable substitutions to approxi-
mate the neural network’s mental model on a task [16]. The first option
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is straightforward (i.e., making transparent the inner logic and algorith-
mic functions of the model), but requires users be equipped with deep
learning expertise, and is thus inappropriate for model users [28]. In
contrast, the latter option must be carefully employed as it comes with
inherent information loss and potentially false reflection [9].

One interpretability approach that is suitable for model users is to
demonstrate how input perturbation affects model outputs. In image
classification, saliency and activation maps [12, 38, 40, 41, 55] measure
the importance of the input features (i.e., image pixels) when classifying
an image. The drawback is that these approaches only provide local
or sample-level explanations for individual images. Cross-grained
insights which can help users understand class or global-level model
behaviors—e.g., measuring the influence that ear and fur have on
predicting a classification of a cat—is not possible [24]. However, such
understanding can be important for model users, as it allows them to
compare their own mental models of how classification should work to
the neural network’s mental model [23].

To facilitate such understanding, concept-based methods have re-
cently been introduced by the AI community [15,24,45,51]. For image
classification, a concept refers to a group of pixels in a sample that
represents an important part of the class object within the image [15].
To be considered as a concept for a class, the concept needs to be easily
understandable to human users, consistent within each concept but
separable from other concepts, and necessary for the prediction of the
class. Importantly, concepts can be used to generate explanations at
the different levels of granularity. At a high level, we can compute
the concepts that are influential to classes (e.g., ear, fur, tail are likely
important to the cat class). Locally (for an instance in a class), we can
measure how much each concept influences the correct or incorrect
classification of the class. When concepts and classes are aggregated
together, there is the potential to form a global perspective of the neural
network’s mental model, to understand the large-scale behavior based
on what the network has learned.

Although concepts are appropriate for use as an interpretability
technique for model users [24], there has been little broad application
of this technique. This is likely because of two shared complexities that
make concept generation and presentation a difficult exercise: (1) The
common procedure to create concepts is by hand (i.e., manually). To
automatically generate the massive concept space that covers an entire
neural network is a non-trivial exercise. (2) Structuring, navigating, and
probing such a concept space in a way that supports different (global
and local) explanation granularities is likewise non-trivial.

To address these two challenges, we propose CONCEPTEXPLAINER,
consisting of two primary components: (1) a backend pipeline interac-
tively (and automatically) generates and structures a concept space for a
neural network, and (2) a coordinated, visualization-driven frontend lets
users interactively explore and probe the concept space. To the best of
our knowledge, CONCEPTEXPLAINER is one of the first interactive
visual analytics systems to support model users employing concept-
based explanations to understand deep learning models. At the global
level, CONCEPTEXPLAINER can reveal which concepts are broadly
influencing the neural network’s decision making. At the class level,
users can visualize which concepts are influential for that class, and can
explore the overlaps of influential concepts which are shared between
classes. At the instance level, individual images can be reviewed to see
how present/non-present concepts affect the model’s correct/incorrect
predictions. In developing and evaluating CONCEPTEXPLAINER, we
make the following research contributions:

(1) Identifying challenges and goals. Based on an analysis of
challenges in XAI for model users, we identify salient design chal-
lenges and goals which are important for concept-based explanation,
particularly in an interactive visualization context.

(2) A novel visual analytics tool for concept-based explanation.
To support the ideated challenges and goals, we design and implement
CONCEPTEXPLAINER, an interactive system that automatically gen-
erates a concept space for an image classification neural network, and
supports model users to explore and probe concept-based explanations
at multiple levels of granularity. CONCEPTEXPLAINER is designed
based on an iterative prototyping process and validated through multiple

evaluations (usage scenarios and a user study).
(3) Empirical findings and generalizable takeaways. Based on

the process of designing, implementing, and validating CONCEPTEX-
PLAINER, we discuss several lessons learned and takeaways about how
visualization-driven concept-based explanation can support XAI tasks
for model users, such as identifying issues (or biases) in data samples,
and how tools like CONCEPTEXPLAINER can be extended in the future
(e.g., supporting expert users).

2 RELATED WORK

2.1 Deep Learning Interpretability using Concepts
There are two primary approaches for using concepts to improve deep
learning interpretability: (1) training inherently interpretable models
with concept-based constraints. (2) constructing post-hoc explanations
based on concepts.

Regarding the first approach, Koh et al. [25] proposed Concept
Bottleneck Model (CBM), which restricts neural networks to behave
in an auto-encoder manner where they first map inputs to human-
interpretable concepts and then predict based on those concepts. Chen
et al. [5] proposed Concept Whitening (CW) layer as a substitution for
the normalization layer (i.e., batch normalization) to achieve higher in-
terpretablity. While these methods employ concepts to offer embedded
interpretablity with no extra dependency, they do not provide ways to
gain insights into a trained model. Our work differs from this line of
research as we seek to interpret fixed models with no alteration.

For the second approach, TCAV [24] provides a means to computa-
tionally define a concept and calculate its class-specific influence on
model predictions (called the TCAV score). Building upon TCAV,
ACE [15] is a technique to automatically extract influential class-
specific concepts from a dataset. For a formal description of ACE
and TCAV, see Sect. 4.3, where we describe how both techniques are
incorporated into CONCEPTEXPLAINER’s backend to automatically
define and extract concepts.

Similarly, Ge at al. [14] proposed the Visual Reasoning Explanation
(VRX) framework that answers interpretability questions such as Why?
and Why not? [28, 29] from a concept perspective by extracting
and organizing class-specific concepts using trained structural concept
graphs (SCGs) based on pairwise concept relationships. Though VRX
provides insightful instance analysis, it requires training an SCG for
each class. This makes VRX difficult to implement within interactive
scenarios (i.e., as a part of a user interface) due to computational cost.

2.2 Visual Analytics in Concept-based Interpretability
A large amount of neural network interpretability research in the vi-
sualization community has utilized (non-concept-based) conventional
methods, including visualizing features, saliency and activation maps,
and visualizing the model neurons or architectures (e.g., [3, 34, 42]);
for more information, there are several recent surveys that discuss XAI
from a visualization perspective [19, 52, 53]. For research that em-
ploys visualization to support concept-based tasks, there are two recent
systems that are highly relevant to CONCEPTEXPLAINER:

CONCEPTEXTRACT [54] utilizes visualization within a human-in-
the-loop pipeline for concept extraction and fine-tuning. The system
generates initial concept segments using ACE; the user then interac-
tively refines the set of concept images. The user can also participate
in refining neural network-based binary concept classifiers by inter-
actively supplying labels. The intent of the system is to counter the
potential drawbacks of automatic concept extraction, such as human
incomprehensible patches, by incorporating human oversight and man-
ual labeling, with the ultimate goal of enabling efficient handcrafting
of high-quality concepts.

NEUROCARTOGRAPHY [35] aims to interactively reveal neuron-
concept relations by grouping a model’s similarly-activated neurons
in the same latent layer by the same set of data instances. The corre-
sponding set of data instances is viewed as a set of concepts. Concepts
discovered in this way are layer-dependent. They evolve as layers go
deeper. The system is thus capable of letting users analyze concept
evolution in the context of the neural architecture, which is potentially
beneficial to expert users (e.g., model developers) in debugging.
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While these two systems combine concept-based explanations and
visual analytics, both differ from CONCEPTEXPLAINER in two impor-
tant ways: (1) They are designed for expert users; in contrast, we focus
on AI model users as defined by Hohman et al.’s survey paper [19]. (2)
They support different tasks (creating/refining concepts, and revealing
concept/neuron relations); our system is designed to probe and explore
concepts as a way to understand model behavior.

2.3 Deep Learning Interpretability for Model Users
The popularity of deep learning in today’s society has led to increased
demands for XAI techniques that are friendly to model users who have
zero or few deep learning background [30]. Desiderata for this type
of explanation includes faithfulness, consistency with prior beliefs and
generality [4]. Liao et al. [28] proposed a set of design principles
for end users, targeting explanation system in form of a question bank,
where global explanations for a model’s decision making and local
explanations for a particular decision on an instance were ranked as
top interests. Similarly, Hohman et al. [19], in their categorization
of end users (which include model developers/builders, model users,
and non-experts) suggest that model users who apply deep learning
models to their domain tasks mostly need tools that support exploration
of model behaviors at both local and global scale. Concept-based expla-
nations fits these needs well, as they require minimal prior knowledge
about neural networks (e.g., it is not necessary to know technical con-
cepts like backpropagation) while remaining intuitive and accessible.
CONCEPTEXPLAINER supports probing and exploring of concepts at
multiple levels to support interpretability tasks for model users.

3 DESIGN CHALLENGES AND GOALS

Similar to prior visualization design studies in XAI [19, 20, 39], we
identify a salient set of design challenges (C1–C4) which are important
for concept-based explanation for model users, based on reviewing of
state-of-the-art publications that discuss challenges in XAI, concept-
based explanations, and AI explanations for model users (see Section 2).
We distill these into a set of four design goals (G1–G4), which we use
to guide CONCEPTEXPLAINER’s development.

Fig. 2. An example of how classes, concepts, and instances are re-
lated. Using our concept extraction and clustering pipeline (described in
Sect. 4.3, we show an example concept for each of the fire engine, white
wolf, and Samoyed classes.

3.1 Design Challenges
(C1) Extracting human-understandable concepts for classes. There
is increasing evidence that neural networks predict based on a combi-
nation of the concepts present in instances [10, 18, 22, 33, 48]. It is
helpful for the user to understand neural network behavior by demon-
strating what concepts a neural network relies on for predictions and
the extent of concept influence on predictions. For example, when
the neural network classifies a tiger, is the bushy background concept
more influential or the tiger stripe? By extracting influential concepts
for each class, the user can intuitively understand how the network
understands each class and verify if it works in a sensible way. How-
ever, discovering concepts and measuring concept influences can be
difficult as noise is inevitable and there are different ways to measure
influence [54]. In our work, we adopt the ACE method for concept
extraction and TCAV method for measuring concept influence, as they
are the most widespread approaches for concept-based explanations.

We also propose a concept clustering process after concept discovery
to structure the concept space and facilitate concept navigation.

(C2) Multi-scale concept visualization for large datasets. System
scalability has gained increasing attention in the visualization com-
munity. The issue becomes salient when visual interfaces for XAI
are concerned because models to be explained are trained on large
datasets. Concept explanations also face this issue because the number
of concepts discovered grows linearly with the number of classes in
the dataset. To demonstrate the concept space and enable users to
gain insights from navigating the space, we need more than a naive
navigation mechanism which can cause the user to be lost in the deluge
of concept information without a clear navigational goal. Apart from
that, the data structure of concepts – quantitative influences and images
– requires specifically designed visualizations to present.

(C3) Revealing conceptual overlap between classes. The concep-
tual overlap (i.e., common influential features) between classes can
reveal to the user why one class might be easily misclassified as another
(e.g., a Samoyed classified as a wolf due to the influence of a snowy
background concept). Among a group of classes, understanding what
concepts are shared (or not shared) can help discover features that cause
confusion [17] and/or serve as the unique “signature” of a class in the
neural network’s mental model. For example, Fig. 2, shows a network
has learned a white fur concept from both the white wolf and Samoyed
classes, which provides an idea about the commonalities the network
sees between these classes. In contrast, the lack of overlap between
fire engine and white wolf also suggests that the network discriminates
animals from vehicles.

(C4) Balancing global explanations and local explanations.
Global explanations without much detail are generally easier to un-
derstand. However, since global explanations are a summary of local
behavior solely revealing global explanations might lead to unfaithful
interpretations. To ensure faithfulness of the explanations we need
to show information at both global and local levels and integrate the
analysis process at both levels in an organic workflow [36]. The user
benefits from having a holistic view of neural network behavior at vari-
ous levels (see Fig. 2) in a consistent concept-based framework so they
can (1) recognize contradictory explanations (2) verify their hypothesis
at different levels.

3.2 Design Goals
Based on the design challenges C1–C4, we identify four design goals
for the CONCEPTEXPLAINER system to support interactive concept-
based explanations of neural networks’ behavior for model users.
Roughly, these goals can be ordered in terms of their granularity: at the
global, class, and instance levels of analysis and explanation.

(G1) Navigating the global concept space. We aim to facilitate
navigation in the concept space of a large dataset (in our case, we use
ImageNet, which contains 1.2 M images for 1000 classes, see Sect. 4.2)
(C2). The methodology we use is transferable to other image datasets
as long as a trained deep learning model is available. To discover the
concept space while preventing noise (C1), we first use ACE algorithm
to extract influential concepts from the dataset. To facilitate structured
concept navigation we cluster the extracted concepts into multiple
concept clusters. The clustering of concepts makes the navigation
easier—the user can start their navigation by peeking at various concept
clusters to pick up the one they want to explore and get into the cluster
to see concepts inside. By gradually understanding the concept clusters
the user can understand the concept space. The transition from concept
cluster to individual concept reinforces an overview-first-detail-on-
demand workflow. To help the user keep track of their investigation
process in the concept space and understand the concept clusters by
labeling them (taking notes of them) in a user-driven way, annotation
functionality should also be available in the system.

(G2) Supporting intra-class concept analysis For a class, the
discovered, influential concepts can be represented as a collection of
image patches that have similar high dimensional activations. These
influential concepts intuitively reveal how the model understands a
class. The system needs to present these concepts such that the user
can understand what they are and the extent of their influence (C2,
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Fig. 3. The workflow for CONCEPTEXPLAINER. In the concept discovery stage, class-specific images are segmented, embedded in latent space and
clustered to form class-specific concepts. In the concept filtering stage, non-influential concepts are filtered based on t-test on their TCAV scores.
Concepts are then clustered in the concept clustering stage. We employ visual analytics in the frontend interface to let users explore and probe
concepts at the local, class, and global levels; users can also interactively update parameters on the backend stages. By quickly scanning through
concept patches in the visual interface, the user can determine if those patches are comprehensible enough and update the backend interactively
(e.g. changing image segmentation methods from ’QuickShift’ to ’Slic’ or increasing filtering thresholds).

C3). Users can even inspect the most influential concepts to see if the
network has learned sensible relations (e.g., noisy concepts should be
less influential than relevant concepts).

(G3) Supporting inter-class concept analysis. Understanding
conceptual commonalities between classes can help users to under-
stand how the network perceives similar/different classes and pinpoint
concept-based root causes for misclassifications. To this end, we seek
to demonstrate the links between similar concepts of different classes
(C3). It is necessary that inter-class concept analysis go beyond “com-
paring two classes,” as several classes may share commonalities of
interest and the user may want to understand how the neural network
considers them comprehensively.

(G4) Supporting instance analysis. Only explaining neural net-
work behavior from a global or class level might lead the user to
overlook important details, resulting in misinterpretations of how the
network should work (C4). To enable detailed inspection, while not
overwhelming by revealing too many details, concept influences can
be measured for individual instances. Such options keep the analytical
framework unified: the user does not need other tools for instance ex-
planations/analysis. In addition, instance-level analysis also helps users
investigate edge cases (“Why did the model misclassify this image?”)
by listing influential concepts of the image.

4 SYSTEM DESIGN

Based on the design goals G1–G4, we develop CONCEPTEXPLAINER,
an interactive system that provides model users with the ability to probe
and analyze concept-based explanations at both the global and local
levels. As shown in Fig. 3, the system consists of an integrated backend
and frontend. In the backend, we design a processing pipeline that
leverages concept-extraction methods (specifically, TCAV and ACE) to
automatically extract and organize concepts for a given image dataset.
Extracted concepts are organized into meaningful clusters to facilitate
interactive concept navigation and concept overlap inspection. The
frontend interface (Fig. 1) consists of four coordinated panels: (1) the
header (M) contains controls widgets, including for manipulating the
backend processing (setting parameters for the TCAV, ACE, and cluster-
ing methods), (2) the left panel (A – C) provides overview, navigation
and analysis for classes, (3) the right panel (D – F) provides a clutter-
free locality-retaining overview for the concept space and navigation
mechanisms reinforcing the overview-first-detail-on-demand mantra.
(4) the central panel (G – L) provides support for class/instance level
analysis – an overview of class-specific concepts and inter-class con-
cept links combined with a detailed concept inspection view account
for both class and instance level model behaviors.

4.1 Iterative Prototyping Process
To facilitate our design process, we employed an iterative prototyp-
ing methodology [32]. Over an approximately six months period, we
sketched and prototyped a number of user interface and interaction de-
signs. Designs were holistically reviewed and discussed by the project

team, with additional feedback solicited from XAI researchers who
work on interpretability techniques for model users. Designs deemed
suboptimal were either discarded or refactored (Fig. ?? in the Appendix
shows two examples of “old” interfaces), while well-received designs
were iteratively refined to develop the current system version. As an
example of this process’ impact, we adopted a three-panel layout in
the interface (as shown in Fig. 1 and described in Sect. 4.4). The left
class navigation panel supports class-based analysis and navigation;
in parallel, the right concept-navigation panel supports concept-based
analysis and navigation. Within each of these panels, users can tran-
sit fluently from global perspectives of the model (i.e., visualizing
all classes/concepts together) down to analyzing individual instances.
Classes, concepts, and instances are synthesized together in the center
class-concept panel.

4.2 Dataset and Model
To demonstrate a real-world application throughout the rest of this
paper, we use the ImageNet dataset [7], which is a well-known image
dataset consisting of 1.2M training instances. As a model, we employ
GoogLeNet [44], a convolutional neural network consisting of 22 lay-
ers. GoogLeNet provides a pre-trained model for ImageNet, which
classifies images into 1,000 object categories. Thus, our task is to use
CONCEPTEXPLAINER to explain GoogLeNet’s behavior in the context
of instances and classes for the ImageNet dataset.

4.3 Backend: Concept Extraction and Clustering
We use a combination of TCAV [24] and ACE [15] as the methodologi-
cal backbone for concept-based explanation. Combining these methods
together lets us automatically derive influential concepts for each class
predicted by GoogLeNet and the extent of the class’ influences. By
subsequently clustering the ensemble of derived concepts, we impose a
human-understandable structure on the concepts that approximates the
model’s mental model in classification.

4.3.1 TCAV
TCAV [24], or testing with concept activation vectors, is a concept-
based explanation method that measures the importance of human
understandable concepts to the neural network’s inference—e.g., how
much a stripe concept affects a classifier when predicting a zebra image.
The TCAV approach views concepts as a set of images of similar traits.
A set of images without these traits forms a set of counterexamples (i.e,.
non-concept examples).

A concept activation vector, or CAV, is defined as the normal to the
hyperplane that linearly separates high-dimensional representations of
concept examples from that of non-concept examples. To measure the
influence of a concept to an instance’s prediction, TCAV computes pixel
gradients of the instance at a target layer and compares its direction
with the CAV’s (both are in the same latent space) by taking inner
product of the two. If the gradient vector lines up with the CAV
(indicated by a positive inner product) it means the concept is positively

844



influencing the prediction (stripe makes an instance more likely to be a
zebra). Conversely, if the two vectors part (indicated by negative inner
product), the concept negatively influences the prediction.

The TCAV score, which measures conceptual influence, is defined

as: TCAVQC,k,l =
|{x∈Xk :SC,k,l(x)>0}|

|Xk | where the fraction of k-class inputs

whose l-layer activation vector was positively influenced by concept
C. TCAVQ(·) means quatitatively testing CAVs and SC,k,l(x) is the
aforementioned innerproduct of pixel gradients and CAVs. To prevent
meaningless concepts (concepts with influence ∼0.5), multiple CAVs
can be trained using the same set of concept examples against various
sets of counter examples. A meaningful concept should lead to TCAV
scores that rejects the hypothesis of a 0.5 TCAV score with statistical
significance (we use a threshold of p > 0.01).

To reduce noisy concepts, we train 20 CAVs for each concept on con-
cept examples (this number can be changed via the frontend) and ran-
domly form counter examples after it is generated using ACE method.
TCAV scores are computed for each CAV and averaged.

4.3.2 ACE
TCAV provides a measurement for the influence of human-
understandable concepts on the neural network for a specific class,
but in the base TCAV approach, forming a set of examples for a con-
cept is a manual process. To automate the process of concept genera-
tion and extraction, Ghorbani et al. [15] proposed ACE, or automatic
concept-based explanations.

ACE extracts a set of concepts for each class the model predicts
on, by segmenting the images of the class and grouping segments that
form clusters in the high-dimensional space of specific latent layer; the
TCAV procedure can be followed to filter out meaningless collections.
This combined TCAV-plus-ACE process makes efficient and automated
concept generation tractable. In our system, we default to sampling
50 images for each class, and segment them using SLIC [1] with three
resolutions (15, 50, and 80 segments) per image. The segments are
embedded in the network’s “mixed4c” layer. K-means clustering is then
performed to cluster their latent representations into 10 concepts (high-
dimensional clusters), though each of these parameters is controllable
from CONCEPTEXPLAINER’s frontend.

4.3.3 Concept Clustering
Running ACE will extract a large ensemble of concepts. For example,
we extracted 1,211 concepts from 143 randomly selected classes in
ImageNet using the default parameters mentioned above. This concept
space is unorganized (i.e., there’s no ranking or structure imposed on
them), which makes it difficult to review, explore, and compare them.

An additional consideration (or complexity) is that concepts dis-
covered in different classes might be semantically similar (e.g., snow
background in husky and snowy background in wolf ); such similarity
needs to be demonstrated because it is useful for understanding the
model from a concept perspective.

To enable structured and guided navigation within this the concepts
space (G1), we apply clustering to the extracted concepts. The intent is
to group semantically similar concepts into the same cluster, which will
let us leverage cluster identity as a means to demonstrate conceptual
overlap across classes, and to form a meaningful navigation structure
that the user can rely on to probe and explore the concept space.

The similarity between two concepts is quantified by their cluster
identity (if two concepts come from the same cluster their similarity
is 1, otherwise 0). In the frontend, users can choose between k-means
and agglomerative clustering, and select associated cluster parameters.
Based on feedback from our user study evaluation (see Sect. 6), this
provides good flexibility by allowing users to explore different cluster-
ing levels and granularities, though the system is extensible to other
clustering methods (i.e., as future work) and heuristics. In particular,
clustering itself can benefit from the use of XAI techniques, though
exploring such activities is beyond the scope of the current paper.

4.4 Frontend: CONCEPTEXPLAINER Interface
Fig. 1 shows the CONCEPTEXPLAINER interface, which consists of
four primary panels and several coordinated views (A–N). The top panel

provides interactions with the backend, while the bottom three panels
support a workflow that includes class analysis (left panel), concept
analysis (right panel) and class-concept analysis (central panel).

4.4.1 Class Navigation Panel

The leftmost class navigation panel provides three visualizations (A–
C) to facilitate navigation and selection of classes of interest for concept
exploration. This panel primarily supports exploring the model from a
class-based perspective, and allows users to analyze the concept space
at a global level (G1), comparatively analyze classes (G2 and G3), and
inspect specific instances within a class (G4).

(A) The class performance view summarizes model performance.
Users can begin exploration by brushing histogram bins to filter out
undesired classes (e.g., show only low performance classes).

(B) Brushing updates the class navigation view. This view provides
a global perspective of all classes using t-SNE [47], which maps a
high dimensional representation of classes (computed as the average of
latent vectors of all images of the same class) into a two dimensional
embedding. To prevent overplotting, we grid the bounding box of the
2D t-SNE point cloud and aggregate classes into “clique” circles, sized
by the number of total classes and colored based on average accuracy
of classes in the clique (This design is inspired by the Chameleon
system [21]). Hovering displays a tooltip (see (O)) showing individual
classes belonging to the clique with with a representative image per
class. Users can select a class for subsequent analysis.

(C) Selected classes are displayed in the class confusion matrix
view. The confusion matrix supports inter-class and intra-class analysis
by summarizing the classification performance against ground truth
labels across the selected classes. Clicking on a cell shows a list of
images that belong to the corresponding category of the cell below the
confusion matrix. For example, Fig. 1(C) shows the 11 instances of
tiger cat which were misclassified as tiger.

Hovering over an instance shows the concepts that affect the in-
stance’s prediction. For example, in Fig. 5(J) (part of usage scenario
#3), a police van image was misclassified as ambulance. Hovering on
the instance shows how influential the concepts of these two classes
affect the prediction. In the usage scenario, the ambulance concepts
have slightly higher, influence scores than police van concepts, which
explains why the model misclassified the image as ambulance.

4.4.2 Concept Navigation Panel

The concept navigation panel on the right side of the interface contains
three views that facilitate navigation of the concept space in a structured
way (G1) while providing context during class-concept and instance
analysis (G2–G4).

(D) The entire concept space is displayed in a hexagon plot in the
concept navigation view. The design of this view underwent multi-
ple iterations during the iterative prototyping process. For example,
Fig.7 (top) in the Appendix shows an early visualization design of the
concept space, based on dimensionality reduction where each concept
was plotted as a point. This design had several limitations, including
overplotting and difficulty in distinguishing and selecting individual
concept clusters.

The hexagon design avoids these issues. Instead of plotting a point
cloud, we use the IsoMatch method [13] to plot organize concepts
within a hexagonal grid layout like a heatmap. Each concept is visual-
ized as a hex tile, assigned to a unique location such that (a) clutter and
overlap is avoided, (b) cluster boundaries are easily demarcated using
dark borders, (c) concepts are evenly distributed across the panel’s
available space, and (d) concept clusters are easily selectable.

(E) Clicking on a cluster in (D) loads it into the concept cluster
detail view. This chart summarizes the concepts belonging to a concept
cluster. Concepts are ordered along the x-axis by their influence scores,
which are mapped to the y-axis. Circles are colored using a diverging
blue-to-red color scale based on positive (above 0.5) or negative (less
than 0.5) influence score; the influence score mid-point (0.5) is shown
as a dotted line, and the average influence score over all concepts in the
cluster is shown as a solid horizontal line.
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(F) Hovering or clicking on a concept in (E) loads it into the individ-
ual concept view, which loads all image patches for that concept. By
skimming through these, the user can quickly gain a semantic under-
standing of what that concept is. Skimming multiple concepts in this
way can help show why they belong to the same concept cluster.

As an additional feature for this view, we provide users with an
annotation feature in (D), activated by right clicking a cluster, to input
descriptive information about a concept in a concept cluster for future
reference. The user is also enabled to save their annotation for later
work or upload an existing annotation to start with established insights.

4.4.3 Class-Concept Panel

The central class-concept panel synthesizes information from the
left (class-focused) and right (concept-focused) panels, supporting
interpretation to the underlying model’s behavior on the given data at
inter-class, intra-class and instance levels (G2–G4). It consists of three
views, organized around a workflow going from inter-class comparison,
to intra-class comparison, to instance analysis.

(G) The concept card view, inspired by Spinner et al.’s information
cards [43], provides an overview of selected classes and concepts (e.g.,
selecting a set of classes from the class navigation view). Each class
is represented by a card, with the class name at top. Below each class
title, a histogram shows the distribution of influence scores for the
concepts in that class. If the histogram skews to one side, it means the
concepts are likewise skewed either positively or negatively influential.
In contrast, a normal distribution indicates the majority of concepts in
that class are closer to neutral (i.e., close to the 0.5 influence mid-point).

Below the histograms, a detailed dot plot shows individual con-
cepts as circles. Circles are organized into rows corresponding to their
concept clusters (labeled at left, e.g., the first row “CC9” stands for
“concept cluster #9”). Circles located on the same row belong to the
same concept cluster (i.e., they would be in the same cluster in the
concept navigation view in (D)), even when they are distributed among
different classes. The left-to-center-to-right position of a circle (along
with its corresponding red-to-white-to-blue color scale) within its class
card is based on its influence score along the negative-to-neutral-to-
positive scale. Concepts in the same row are also linked via horizontal
lines to emphasize their concept cluster grouping (supporting inter-class
analysis, G3). This design is inspired by Lex et al.’s work [27]. Clicking
or hovering on these links highlights the corresponding concept cluster
in gold in the hexagon plot in (D), and loads the specific concept cluster
in the detail view in (E).

To support additional concept analysis, we adopted the idea of pe-
riphery plots [31] to supply condensed insights to the left and right of
the class cards. (I) The box plots to the left summarize the influence
scores for the concepts for each row (i.e., for each concept cluster), con-
necting class-specific concepts to global concept clusters. The length
of the box encodes the range of TCAV scores for concepts within a
cluster and the vertical line shows the median. (H) To the right, the bar
chart shows the number of concepts belonging to that concept cluster,
based on the current selection of classes. A higher frequency number
indicates that this concept cluster is likely a common characteristic of
these classes in the model’s mental map.

(J) Clicking the title bar of a class card loads the class in the class-
specific concept view. This view facilitate intra-class concept inspec-
tion (G2). Each row shows one concept, sorted based on decreasing
influence score (i.e., the top concept rows are more positively influ-
ential to the prediction of the class). Users can review and verify if
the model is making inferences about a class based on a set of reason-
able concepts. For example, if the user sees a concept relating to an
image’s background, as opposed to important semantic features (e.g.,
for a zebra, grassland as opposed to stripes), it may indicate that the
neural network is assigning too much weight to the background of the
image while ignoring foreground information that might reasonably be
important (at least from a human’s perspective).

In each row, we present five representative image patches of the
corresponding concept so that the user can form a rough idea of what
the concept is about. Additional samples can be loaded by clicking the
� icon beside each label.

(K) To the right of the class-specific concept view, the instance influ-
ence matrix visualizes local explanations about the models behavior for
individual instances. This heatmap plots each row as a concept (aligned
with the concepts to the left in (J)), where each column indicates an im-
age sample in the dataset. Each cell indicates, for a particular instance,
how influential that concept was in its prediction, colored using the
same red-to-blue color scale from previous views. Above each column,
a � or � icon indicates if the prediction was correct.

Instances are sorted based on classification accuracy and confidence
(i.e., the left-most column is the correctly classified instance with the
highest confidence and the right-most column the misclassified instance
with the highest confidence). In Fig. 1, the user has scrolled all the way
to right, showing incorrect predictions with the highest confidence.

(L) Clicking on a column loads its instance into the instance view.
This card provides details about the instance (G4), including its image
with concept patches that can be toggled on as overlaid semi-transparent
boundaries. The color of the semi-transparent masks matches the colors
of concepts in (J), its ground truth labeling, and the model’s prediction
and confidence. At the bottom of the card, a lollipop chart shows the
concept influences specific to that particular instance.

4.4.4 Header Bar Panel
(M) The header bar provides control widgets allowing users to update
parameters and re-run the backend pipeline. The menu includes select-
ing a dataset and model, selecting the model layers where the concepts
are extracted, setting TCAV and ACE parameters, specifying the con-
cept clustering methods and number of clusters (i.e., the parameter k in
k-means). The number of clusters is set by default to the optimal value
based on the silhouette score [37]. Users can hover on other numbers
of clusters to see their scores as shown in (M).

5 USAGE SCENARIOS

To help demonstrate how CONCEPTEXPLAINER supports learning
about model behavior, we present three usage scenarios exploring
GoogLeNet and ImageNet. Each focuses on a different type of explo-
ration and analysis: (#1) for individual classes and their instances, (#2)
comparing the concepts between two classes, and (#3) understanding
concept commonalities across many classes. We tell these stories from
the perspective of Michael, a model user.

Fig. 4. Usage scenario #1 represents analysis of the zebra and lionfish
classes. A full-size figure is available in the Appendix.

5.1 Usage Scenario #1: Verifying GoogLeNet’s knowledge
about individual classes and samples

As Fig. 4(A) shows, Michael begins by reviewing clusters in the concept
navigation view, focusing on clusters with darker colors (i.e, contain-
ing more influential concepts). Loading Cluster #13 in the concept
cluster detail view, he realizes the two most-influential concepts (from
the zebra and lionfish classes) look like stripes. He loads the zebra
and lionfish classes into the central class-specific concepts panel for
subsequent investigation.

In the class-specific concepts panel, Michael sees several cross-class
links between the lionfish and zebra classes, which further confirms that
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conceptual overlap exists (Fig. 4(B)). He sees that the shared concepts
primarily relate to stripe patterns. As both zebras and lionfish have
prominent stripe patterns, GoogLeNet has learned (or formed a mental
model) that stripe patterns are a way to recognize both classes.

Michael next inspects the individual concepts of the zebra and lion-
fish classes (Fig. 4(C)). For the zebra class, the three most positively
influential concepts pertain to stripe patterns. As influence decreases,
the concepts become more associated with noise and background fea-
tures, such as representing desert or grassland. In this case, GoogLeNet
is aligning with Michael’s mental model, as background information is
largely irrelevant to classifying these images as zebras.

Reviewing individual samples using the influence instance matrix
and the instance view, Michael notices a misclassified image of zebra
predicted as the llama (Fig. 4(D)). The zebras in this image are very
small, and “background concepts” (such as grasses and sky) are the
main concepts present. In other words, the model predicted using
less-influential concepts that were present, as stripe concepts were not
found. This happens several times in instances predicted as zebra or
lionfish, and the model regularly predicts wrongly in such cases.

Fig. 5. Usage scenario #3 represents analysis on a group of classes. A
full-size figure is available in the Appendix.

5.2 Usage Scenario #2: Spotting unreasonable concepts
and data quality issues

Using the class navigation view, Michael looks at other classes similar
to zebra. Hovering on the circle containing the zebra class displays a
tooltip, which indicates the tiger class (another animal with prominent
stripes) is also contained in this clique (Fig 1(O)). An adjacent clique
in this view is colored in red (indicating below-average classification
accuracy); the tooltip shows that this clique contains a tiger cat and
tabby class. Intrigued, he selects the tiger, tiger cat, and tabby classes.

The class confusion matrix (Fig. 1(C)) view shows many misclassifi-
cations between tiger cat and tiger; for example, there are 11 images
of tiger cat (ground truth) that were predicted as tiger by GoogLeNet.
Selecting this cell loads these images; to Michael’s eyes, they all indeed
appear to be tigers, not tiger cats. Already, Michael can see that there
is a data labeling issue in ImageNet: instances that should have been
labeled as tigers were wrongly labeled as tiger cats.

Most tiger cat concepts appear to have negative influences in con-
cept card view (Fig. 1(G)). Michael reviews these in the class-specific
concept view (Fig. 1(J)).

He quickly scans through the concepts, and unsurprisingly, many of
them seemed to be random or incomprehensible patches that do not
form a collective theme. In other words, GoogLeNet did not form a
sensible mental model about tiger cat. Interestingly, the most negatively
influential concept at the bottom row presents a tiger stripe pattern,
which helps explain why so many tiger cats are misclassified as tigers.

Because of this, Michael decides to review tiger cat instances that
contain the stripe concept using the instance influence matrix and the
instance view (Fig. 1(N)). Reviewing misclassified instances, he again
can see that there are several images labeled as tiger cat but actually
including tigers in them. Overall, Michael observes that mislabeled
instances tend to include small objects of tigers. This explains why the

tiger stripe was not positively influential – because it was not easily
detected due to its size.

5.3 Usage Scenario #3: Understanding the neural net-
work’s knowledge on a group of classes

In Fig. 5(A), Michael investigates GoogLeNet’s global mental model
by reviewing the class navigation view. He notices a big circle in the
bottom right corner of the visualization, indicating a clique containing
many classes. The tooltip shows that the classes (7 in total) are all
vehicles. He selects all of them. Reviewing these in the class-specific
concepts view, he sees (as expected) many cross-class links in the
class-specific concepts panel which connect influential concepts for
the various vehicles. This means the neural network has likely learned
common features across different cars.

Michael scans through the horizontal links across classes one by one.
Fig. 5(B) and (C) show that the highest-ranked concept cluster (labeled
CC14, for concept cluster #14) contains window-like patches in the
beach wagon class, so an important “vehicle commonality” the network
has likely learned is “car windows.” This hypothesis is confirmed by
reviewing across other concepts in this concept cluster (e.g., Fig. 5 (C)
also contains window patches from the police van class). The next set
of links in Fig. 5 (D) and (E) tend to show car side concepts, which are
relevant features regardless of the vehicle type (in this case, between
jeep and cab. Further investigation reveals both urban background in
Fig. 5 (F) and (G), and wheel as influential concepts in Fig. 5 (H) and (I).
Both concepts make sense at a high level (“Cars have wheels and car
pictures are usually taken in urban environments.”), but interestingly,
the jeep class does not consider the urban background concept as
influential. Reviewing jeep instances reveals why: many jeep pictures
are taken with the background in nature (desert or woodland settings);
he cannot find jeep pictures taken in urban settings.

While many of the concepts make sense upon review, Michael is
surprised to realize that GoogLeNet considers windows and car sides as
the most salient discriminators or influencers for predicting cars, while
other features like wheels or headlights are not chosen.

6 USER STUDY

To evaluate CONCEPTEXPLAINER, we designed a user study to answer
two primary questions relating to design goals (“How well does the sys-
tem support the design goals (G1–G4)?”) and overall usability (“What
is the overall usability of the system?”). Our user study consisted of two
stages: i) a task stage where participants completed three representative
analysis tasks in line with the four design goals listed in Sect. 3.2; and
ii) a freeform analysis stage where participants freely probed model
behavior using the interface. We recruited ten participants who were
model users in deep learning, had not heard of concept-based explana-
tions, and had not used ImageNet and GoogleNet before. We collected
both quantitative and qualitative data, which allowed us to robustly
evaluate both the ability of CONCEPTEXPLAINER to support the design
goals G1–G4, and also to understand the system’s overall usability.

6.1 Study Design
Participants took the following procedure for the study:

(1) Training. Participants completed a short demographics ques-
tionnaire. Next, they were given a high-level introduction on TCAV,
ACE, and what concept influence means. The study administrator
walked the participant through available features and functionalities of
CONCEPTEXPLAINER; participants completed a simple training task
to help familiarize themselves with the system. During the training,
participants could ask questions at anytime, and were allowed to play
around with the interface until they felt comfortable to proceed.

(2) Task. Participants completed the following three tasks (T1-T3):
T1: Inspect the influential concepts for a given class: (1) Identify

the comprehensible concepts and state why they are comprehensible.
(2) Identify the incomprehensible concepts and state why they are
incomprehensible. (3) Review the concept influences; what are the
items that make sense to you, and what are the items that do not
make sense to you? (4) Take a look at the instances contained in
the influence matrix, find interesting cases and describe why they are
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interesting. This task primarily focuses instance-level and single class-
level analysis, and supports G1 and G2. Each participant completed T1
on two classes: one high-performance (accuracy > 0.9) and one poor-
performance (accuracy ∼ 0.1−0.3); class choices for each participant
were randomly selected from a high-performance set (zebra, tench,
lionfish) and a poor-performance set (tiger cat, appenzeller, seashore).

T2: Given two classes that are similar and have overlapping misclas-
sifications (i.e., images which should belong to C2 are classified as C3,
and vice versa): (1) Identify what are the commonalities between their
influential concepts. (2) Identify distinguishable influential concepts
unique to each class. This task represents instance-level and multi-class
analysis, and supports G2 and G3. The class pairs for T2 were ran-
domly selected from the following sets: {tiger cat, tiger}, {eskimo dog,
siberian husky}, and {police van, ambulance}. Note that if tiger cat
was chosen during T1, it was not an option in T2.

T3: Given a group of seven related classes representing various
vehicles (fire engine, police van, school bus, jeep, cab, ambulance,
beach wagon)): (1) What are the common influential concepts across
this group? Reason about the vehicle knowledge that the neural network
has learned and what vehicle knowledge it lacks. This task represents
multi-class and global-level analysis, and supports all four design
goals (G1–G4). All participants used the same set of seven classes for
this task. (Two participants had previously seen the police van and
ambulance classes in T2, however their results were in line with other
participants, so we do not believe this caused any study confounds
during this task.)

The task order was consistent. Each participant was given a verbal
description of the task (which was also available on a sheet of paper)
by the administrator. Think-aloud protocol was employed during this
(and the following) stage; the administrator listened to verbal utterances
to help confirm that the participant was correctly performing the task
and to check if the participant’s interpretations of tasks and system
features was correct. Upon completion of a task, the participant verbally
summarized their answer(s) to the administrator.

(3) Freeform Analysis. In this stage, participants conducted an
undirected, freeform analysis of ImageNet to gain insights on model
behavior using CONCEPTEXPLAINER. Participants were told to use
the tool until they were satisfied, but were required to spend at least
10 minutes. To prevent participants from becoming lost or frustrated,
we prepared an initial (optional) motivation scenario which was only
given if participants asked for guidance: “Check if the neural network
is working sensibly on well performing classes.” Only one partici-
pant asked for this, as we found that the others had ideated their own
exploratory goals upon completing the task stage. Participants also
verbally reported their thought processes during this stage.

(4) Review. Participants completed a short usability survey to rate
various system components using 7-point Likert scales; they were also
allowed to provide comments or critiques about the system.

6.2 Participants and Apparatus
We recruited ten participants: nine graduate computer science students
at Arizona State University and one analyst with two years experience
in a data company (average age = 25.8, SD = 2.08; 8 males, 2 females).
Although a couple of the participants had colloquial familiarity with
AI/ML, none had expertise in deep learning development or analysis,
and all were unfamiliar with concept-based explanation methods. Study
duration averaged 86 minutes (SD = 15).

CONCEPTEXPLAINER was shown using Google Chrome in full-
screen mode on a 30” monitor at 3840× 2160 resolution. Study ses-
sions were conducted in a quiet, office environment with no distractions.

6.3 Study Results
To analyze the study, we first report quantitative ratings from the review
stages’ usability survey. We next report on qualitative verbal comments
and responses given by participants, which were collected via the think-
aloud protocol and summary answers during their tasks. To analyze
these verbal comments, we used a grounded theory procedure [46]
to qualitatively code comments based on assessing how the system
promotes insights and supports the design goals G1–G4.

Fig. 6. Participant usability ratings about CONCEPTEXPLAINER based on
the survey given during the user study’s review stage. Median ratings
are indicated in gray.

6.3.1 System Usability Ratings
Fig. 6 summarizes system usability based on participants ratings from
the survey completed during the review stage. Ratings are broken
into two types: (Q1–Q3) the overall usability and effectiveness of the
system, (Q4–Q13) the usability of individual features.

In general, feedback was positive. We highlight that the system was
considered easy to use (Q1), learn (Q2), and understand (Q3), and that
the individual interface panels, the class navigation panel (Q5–Q6),
the class concept view (Q7–Q11), and the concept navigation panel
(Q12–Q13) were all positively regarded.

6.3.2 Feedback from Novice Users
The survey ratings show that CONCEPTEXPLAINER achieves good
usability. Here, by analyzing the verbal comments and responses of
participants, we reflect on the types of insights users can generate with
the system, specifically in the context of the design goals (G1–G4).

(G1) Contextualizing concepts using the concept navigation view.
The concept navigation view was heavily used and considered positively
as a way to explore new concepts. In particular, several participants
inspected similar concepts using thi view as a way to verify their
intuition or mental model about a concept of interest. “I’m trying to
see what are concepts similar to this one because I want to know if my
thought is correct” (p5). “This map thing [the concept navigation view]
is cool. I can compare this [concept] with similar ones” (p8). “The
navigation view helps me understand a concept better” (p9).

(G2) The concept view is effective revealing class-specific con-
cepts. Several participants regarded the class-specific concept view
(Fig. 1 (J)) as effective in revealing influential concepts. Specifically,
the list of concepts ranked by concept influences provided them with in-
tuitive insights for network behaviors. “This is helpful because I can im-
mediately see what the neural network learned about the class” (p3). “It
doesn’t make sense that top concepts are background patches...middle
concepts should be moved up. It’s clear in the view” (p8).

Participants generally liked the class-specific concept view, and felt
most concepts had “good quality” and were easily interpretable. How-
ever, participants also sometimes encountered incomprehensible or
noisy concepts, which could hinder their analysis. In part, this is a
byproduct of the concept generation pipeline used in CONCEPTEX-
PLAINER’s backend, which automatically extracts and defines concepts
(bottom up) as opposed to creating them by hand (top down). We
discuss this issue in Sect. 7

(G3) Concept links are effective revealing inter-class concept
overlap. Participants reported it was easy to identify conceptual links
between classes and understand them by using the concept view. “I
can see that concept cluster 5 are green areas in the two classes.” (p2,
analyzing the tiger cat and tiger classes), “The first link is white-fur

848



stuff.” (p5, analyzing the Eskimo dog and Siberian husky classes), “I can
see silhouette of cars, tire and window [being the common concepts].”
(p7, analyzing the police van and ambulance classes). As an extension
of the current system, two participants (p1, p9) requested the ability to
compare two or multiple concepts in parallel.

(G4) Instance analysis was found to be useful for identifying data
quality issues. A couple of participants identified data quality issues
solely using instance analysis view. “Clearly, real tigers are mislabeled
as tiger cats in the testing set” (p3). “Why is there a tiger stripe in
tiger cat concept 8? It doesn’t make sense ... Oh I see why, because
there are tiger pictures in ground truths” (p8).

Although participants in general like the instance analysis views,
four participants (p1, p5, p6, p8) mentioned it was hard for them to
link concepts with their segments in the image instance view. Three
participants (p1, p3, p7) mentioned that instances sometimes seemed
counterintuitive. “Some instances are highly (positively) influenced by
the concepts but are still misclassified, why?” (p7, while analyzing
tiger cat). “Why are ‘police’ letters negatively influential here?” (p3,
analyzing police van). “Why are cab cases all negatively influenced
but correctly classified?” (p1, comparatively analyzing multiple car
classes). The current interface does not support answering these sorts
of “why?” questions; see Sect. 7 for discussion on this.

7 DISCUSSION AND CONCLUSION

Based on the set of conducted usage scenarios and a robust user study,
we demonstrate how CONCEPTEXPLAINER addresses a number of
design challenges (C1–C4) and goals (G1–G4) that are important to the
problem of concept-based explanation for model users. In particular,
model users can effectively explore and reason about model behavior
at different granularities (i.e., instance, class, and global levels). Below,
we discuss several takeaways and lessons learned from our experiences
in designing and evaluating CONCEPTEXPLAINER.

User Study Takeaways. In general, the user study demonstrated the
overall performance of our system from a human-centric perspective,
indicating that it provides good usability and successfully supports the
design goals (G1–G4), while also illustrating nuances and complexities
in concept-based explanations.

One interesting takeaway from our study is that participants tended
to use the instance analysis view more than we expected; based on
feedback, we see several potential avenues for future extensions to
enrich functionality. For example, the current instance analysis view
provides instance-level explanations in terms of individual concept
influences. A logical next step could be illustrating how the interplay of
different concepts influence an instance’s prediction. For example, both
snowy background and white fur are positively influential for the white
wolf class. When these two concepts co-occur in an instance, do they
increase the likelihood of a white wolf prediction, compared to if only
one concept is present? To achieve this type of fine-grained analysis,
we plan to adopt techniques such as VRX [14] in future versions of
CONCEPTEXPLAINER.

Serendipitously Supporting an Unexpected Task. Our user study
also revealed an explanatory task supported by CONCEPTEXPLAINER

that we did not intentionally support. During the freeform analysis
stage, several participants analyzed if the model “understood” a class
by quickly tabbing through instances in the class-specific concept view
((J) in Fig. 1). This allowed them to comprehend a rough estimate
of the types of instances making up the class, and to use this as a
basis to understand the influential concepts that the model has learned
for the class. This “fact-checking” action was unexpected to us, but
demonstrates the flexibility of the system’s visual analytics to support
diverse actions to interpret deep learning behavior.

CONCEPTEXPLAINER’s Suitability for Expert Users. To under-
stand CONCEPTEXPLAINER’s potential suitability for experts (“model
developers and builders” as defined by Hohman et. al. [19]), we con-
ducted pair analytic sessions [2] and semi-structured interviews with
three deep learning experts (Ph.D. students with 3+ years experience
in AI research) to formatively assess how the system could be extended
to benefit their needs and workflows.

Each opined that the system was easy to understand once the concept
method was illustrated and a walk through of the interface was given.
To better support expert usage scenarios, it was suggested that concept
explanations could be juxtaposed with visualizing the inner architecture
and logic of the neural network. Such “opening up the black box,” when
faceted with concepts, could enable novel ways to connect peculiar or
unexpected model behavior. For example, when training a model, tools
like CONCEPTEXPLAINER can be used to identify the conceptual root
cause of misclassifications between two similar classes, or to identify
issues in ground truth labeling. One expert also suggested we augment
the interface to let users focus on revealing concept distinguishability,
to more explicitly demonstrate how the neural network discriminates
between classes. In the future, we plan to even automate these suggested
insights such as computationally determining conceptual root cause
of misclassification and recommending most distinguishable concepts
between classes based on similarity metrics.

Actionable Insights. Although our system design is centered on
helping model users, the design and validation process surfaced ad-
ditional ways that it could be helpful for model developers. These
include: (1) Slice discovery [11], which is spotting underperforming
subclasses of a performant class by comparing major influential con-
cepts with data samples and understanding how the training data should
be augmented to account for intra-class data imbalance. (2) Explor-
ing counter-intuitive concepts, which—when present at a collective
level—might indicate potential issues in the model’s architecture or
parameterization. For this point, the model user would likely need to
collaborate with a model developer who could better investigate the
model’s neural architecture to confirm and fix these issues.

Current System Limitations and Future Work. Throughout CON-
CEPTEXPLAINER’s design and evaluation process, we also identified
several limitations in the current system, suitable for investigation as
future work. As an example, study participants commonly compared
between 2–5 classes (with under 30 total concept clusters) in the con-
cept card view (Figure 1(G); it is likely this panel would not scale
much beyond this count. Another issue is that some concepts were
not comprehensible to study participants. Unfortunately, there is no
easy way around this issue; as automatic concept discovery invariably
introduces some amount of noise [15]. As novel concept discovery
methods (which hopefully reduce noise) are developed, they can be
integrated into our system.

Another potential limitation deals with the use of ImageNet, which
was tested on concepts generated from 143 (out of 1,000) classes.
While ImageNet is a well-validated dataset for image classification
tasks, it is possible that scaling to the full set of classes, or testing on
additional datasets (e.g., medical images) and accompanying models
might produce different user experiences. We plan to investigate issues
like these in future iterations of CONCEPTEXPLAINER.

Concept-based Explanations in Other Domains. Currently,
concept-based explanations have primarily been applied in image clas-
sification scenarios. A future work can apply the concept-based ex-
planation for bias detection and mitigation [26]. The concept-based
explanation can be useful to discover irrelevant features that are as-
sociated with classes. Also, our system is optimized for the image
classification task, as opposed to other domains (e.g., natural language
processing). As a future step, we would like to explore the use of
visual analytics as a modality for probing and exploring concept-based
explanations applied to other underexplored domains, such as speech
recognition or time series prediction. Such domains bring their own
complexities; e.g., in image classification, a user can directly observe
the pixels in a set of image patches representing a concept, but there
are no direct analogs to this process in many other domains. Despite
this, visualization may prove to be a key approach for this, due to the
power of visualization in being able to graphically render abstract data
in ways that reveal patterns and insights.

8 ACKNOWLEDGEMENT

This research was supported in part by the U.S. National Science
Foundation through grant DUE-2216452.

849



REFERENCES

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic
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